
CLI and Scripting
Reference

ACM7000 Remote Site Gateway
ACM7000-L Resilience Gateway
IM7200 Infrastructure Manager
CM7100 Console Servers

Version 1.0 2019-05-30

Table of Contents

2

Safety
Please take care to follow the safety precautions below when installing and operating the console server:

- Do not remove the metal covers. There are no operator serviceable components inside. Opening or
removing the cover may expose you to dangerous voltage which may cause fire or electric shock.
Refer all service to Opengear qualified personnel.

- To avoid electric shock the power cord protective grounding conductor must be connected through
to ground.

- Always pull on the plug, not the cable, when disconnecting the power cord from the socket.

Do not connect or disconnect the console server during an electrical storm. Use a surge suppressor or
UPS to protect the equipment from transients.

FCC Warning Statement
This device complies with Part 15 of the FCC rules. Operation of this device is subject to the following
conditions: (1) This device may not cause harmful interference, and (2) this device must accept any
interference that may cause undesired operation.

Proper back-up systems and necessary safety devices should be utilized to protect
against injury, death or property damage due to system failure. Such protection is the
responsibility of the user.
This console server device is not approved for use as a life-support or medical system.
Any changes or modifications made to this console server device without the explicit
approval or consent of Opengear will void Opengear of any liability or responsibility of
injury or loss caused by any malfunction.
This equipment is for indoor use and all the communication wirings are limited to
inside of the building.

 CLI and Scripting Reference

Copyright
© Opengear Inc. 2019. All Rights Reserved.

Information in this document is subject to change without notice and does not represent a commitment
on the part of Opengear. Opengear provides this document “as is,” without warranty of any kind,
expressed or implied, including, but not limited to, the implied warranties of fitness or merchantability
for a particular purpose.

Opengear may make improvements and/or changes in this manual or in the product(s) and/or the
program(s) described in this manual at any time. This product could include technical inaccuracies or
typographical errors. Changes are periodically made to the information herein; these changes may be
incorporated in new editions of the publication.

Table of Contents

4

TABLE OF CONTENTS

CONFIGURATION FROM THE COMMAND LINE 7
1.1 Accessing config from the command line 7

1.1.1 Serial Port configuration 9
1.1.2 Adding and removing Users 12
1.1.3 Adding and removing user Groups 13
1.1.4 Authentication 14
1.1.5 Network Hosts 15
1.1.6 Trusted Networks 16
1.1.7 Cascaded Ports 17
1.1.8 UPS Connections 17
1.1.9 RPC Connections 18
1.1.10 Environmental 19
1.1.11 Managed Devices 20
1.1.12 Port Log 20
1.1.13 Alerts 21
1.1.14 SMTP & SMS 23
1.1.15 SNMP 24
1.1.16 Administration 24
1.1.17 IP settings 25
1.1.18 Date & Time settings 26
1.1.19 Dial-in settings 26
1.1.20 DHCP server 27
1.1.21 Services 27
1.1.22 NAGIOS 28

ADVANCED CONFIGURATION 30
2.1 Custom Scripting 30

2.1.1 Custom script to run when booting 30
2.1.2 Running custom scripts when alerts are triggered 31
2.1.3 Example script - Power cycling on pattern match 31
2.1.4 Example script - Multiple email notifications on each alert 32
2.1.5 Deleting configuration values from the CLI 32
2.1.6 Power cycle any device upon a ping request failure 35
2.1.7 Running custom scripts when a configurator is invoked 36
2.1.8 Backing-up the configuration and restoring using a local USB stick 37
2.1.9 Backing-up the configuration off-box 37

2.2 Advanced Portmanager 38
2.2.1 Portmanager commands 38
2.2.2 External Scripts and Alerts 42

2.3 Raw Access to Serial Ports 43
2.3.1 Access to serial ports 43
2.3.2 Accessing the console/modem port 44

2.4 IP Filtering 44
2.5 SNMP Status Reporting 45

2.5.1 Retrieving status information using SNMP 45
2.5.2 Check firewall rules 45
2.5.3 Enable SNMP Service 45
2.5.4 Adding multiple remote SNMP managers 50

2.6 Secure Shell (SSH) Public Key Authentication 51
2.6.1 SSH Overview 51
2.6.2 Generating Public Keys (Linux) 52
2.6.3 Installing the SSH Public/Private Keys (Clustering) 52
2.6.4 Installing SSH Public Key Authentication (Linux) 53
2.6.5 Generating public/private keys for SSH (Windows) 54
2.6.6 Fingerprinting 56
2.6.7 SSH tunneled serial bridging 57

 CLI and Scripting Reference

2.6.8 SDT Connector Public Key Authentication 59
2.7 Secure Sockets Layer (SSL) Support 59
2.8 HTTPS 60

2.8.1 Generating an encryption key 60
2.8.2 Generating a self-signed certificate with OpenSSL 60
2.8.3 Installing the key and certificate 60
2.8.4 Launching the HTTPS Server 61

2.9 Power Strip Control 61
2.9.1 The PowerMan tool 61
2.9.2 The pmpower tool 62
2.9.3 Adding new RPC devices 63

2.10 IPMItool 64
2.11 REST API 67
2.12 Custom Development Kit (CDK) 67
2.13 Scripts for Managing Slaves 68
2.14 SMS Server Tools 68
2.15 Multicast 69
2.16 Bulk Provisioning 69
2.17 Zero Touch Provisioning 70

2.17.1 Preparation 70
2.17.2 Example ISC DHCP server configuration 70
2.17.3 Setup for an untrusted LAN 71
2.17.4 How it works 71

2.18 Internal Storage 73
2.18.1 Filesystem location of FTP/TFTP directory 73
2.18.2 Filesystem location of portmanager logs 73
2.18.3 Configuring FTP/TFTP directory 73
2.18.3 Mounting a preferred USB disk by label 73

APPENDIX A: Linux Commands & Source Code 75

 CLI and Scripting Reference

CONFIGURATION FROM THE COMMAND LINE

For those who prefer to configure their console server at the Linux command line level (rather than use a
browser and the Management Console), this chapter describes using command line access and the
config tool to manage the console server and configure the ports etc.
This config documentation in this chapter walks thru command line configuration to deliver the functions
provided otherwise using the Management Console GUI.

For advanced and custom configurations and for details using other tools and commands refer to the next
chapter

When displaying a command, the convention used in the rest of this chapter is to use single quotes ('') for
user defined values (e.g. descriptions and names). Element values without single quotes must be typed
exactly as shown.

After the initial section on accessing the config command the menu items in this document follow the same
structure as the menu items in the web GUI.

1.1 Accessing config from the command line

The console server runs a standard Linux kernel and embeds a suite of open source applications. So if you
do not want to use a browser and the Management Console tools, you are free to configure the console
server and to manage connected devices from the command line using standard Linux and Busybox
commands and applications such as ifconfig, gettyd, stty, powerman, nut etc. However these configurations
may not withstand a power-cycle-reset or reconfigure.

Opengear provides a number of custom command line utilities and scripts to make it simple to configure
the console server and ensure the changes are stored in the console server's flash memory etc.

In particular the config utility allows manipulation of the system configuration from the command line. With
config a new configuration can be activated by running the relevant configurator, which performs the
action necessary to make the configuration changes live.

To access config from the command line:

• Power up the console server and connect the “terminal” device:

o If you are connecting using the serial line, plug a serial cable between the console server local
DB-9 console port and terminal device. Configure the serial connection of the terminal device
you are using to 115200bps, 8 data bits, no parity and one stop bit

o If you are connecting over the LAN then you will need to interconnect the Ethernet ports and
direct your terminal emulator program to the IP address of the console server (192.168.0.1 by
default)

• Log on to the console server by pressing ‘return’ a few times. The console server will request a
username and password. Enter the username root and the password default. You should now see
the command line prompt which is a hash (#)

The config tool
Syntax

config [-ahv] [-d id] [-g id] [-p path] [-r configurator] [-s id=value] [-P id]

Description

Chapter 1: Command Line Configuration

8

The config tool is designed to perform multiple actions from one command if need be, so if necessary options
can be chained together.

The config tool allows manipulation and querying of the system configuration from the command line. Using
config the new configuration can be activated by running the relevant configurator which performs the action
necessary to make the configuration changes live.

The custom user configuration is saved in the /etc/config/config.xml file. This file is transparently accessed
and edited when configuring the device using the Management Console browser GUI. Only the user 'root'
can configure from the shell.

By default, the config elements are separated by a '.' character. The root of the config tree is called <config>.
To address a specific element place a '.' between each node/branch e.g. to access and display the
description of user1 type:

config -g config.users.user1.description

The root node of the config tree is <config>. To display the entire config tree, type:

config -g config

To display the help text for the config command, type:

config -h

The config application resides in the /bin directory. The environmental variable called PATH contains a route
to the /bin directory. This allows a user to simply type config at the command prompt instead of the full path
/bin/config.

Options
-a –run-all Run all registered configurators. This performs every configuration

synchronization action pushing all changes to the live system

-h –help Display a brief usage message
-v –verbose Log extra debug information
-d –del=id Remove the given configuration element specified by a '.' separated

identifier
-g –get=id Display the value of a configuration element
-p –path=file Specify an alternate configuration file to use. The default file is located at

/etc/config/config.xml
-r –run=configurator Run the specified registered configurator. Registered configurators are

listed below.
-s --set=id=value Change the value of configuration element specified by a '.' separated

identifier

-e --export=file Save active configuration to file

 -i --import=file Load configuration from file

 -t --test-import=file Pretend to load configuration from file
 -S --separator=char The pattern to separate fields with, default is '.'

-P --password=id Prompt user for a value. Hash the value, then save it in id

The registered configurators are:

 CLI and Scripting Reference

alerts
 auth
 cascade
 console
 dhcp
 dialin
 eventlog
 hosts
 ipaccess

ipconfig
 nagios
 power
 serialconfig
 services
 slave
 systemsettings
 time
 ups
 users

There are three ways to delete a config element value. The simplest way is use the delete-node script
detailed later in Chapter 2. You can also assign the config element to "", or delete the entire config node
using -d:

/bin/config -d 'element name'

All passwords are saved in plaintext except the user passwords and the system passwords, which are
encrypted.

Note: The config command does not verify whether the nodes edited/added by the user are valid. This
means that any node may be added to the tree. If a user were to run the following command:

/bin/config -s config.fruit.apple=sweet

The configurator will not complain, but this command is clearly useless. When the configurators are
run (to turn the config.xml file into live config) they will simply ignore this <fruit> node. Administrators
must make sure of the spelling when typing config commands. Incorrect spelling for a node will not
be flagged.

Most configurations made to the XML file will be immediately active. To make sure that all configuration
changes are active, especially when editing user passwords, run all the configurators:

/bin/config -a

For information on backing up and restoring the configuration file refer Chapter 2 - Advanced Configuration.

1.1.1 Serial Port configuration
The first set of configurations that needs to be made to any serial port are the RS232 common settings. For
example to setup serial port 5 to use the following properties:

Baud Rate 9600
Parity None
Data Bits 8
Stop Bits 1
label Myport
log level 0
protocol RS232
flow control None

To do this use the following commands:

config -s config.ports.port5.speed=9600
config -s config.ports.port5.parity=None

Chapter 1: Command Line Configuration

10

config -s config.ports.port5.charsize=8
config -s config.ports.port5.stop=1
config -s config.ports.port5.label=myport
config -s config.ports.port5.loglevel=0
config -s config.ports.port5.protocol=RS232
config -s config.ports.port5.flowcontrol=None

The following command will synchronize the live system with the new configuration:

config -r serialconfig

Note: Supported serial port baud-rates are ‘50’, ‘75’, ‘110’, ‘134’, ‘150’, ‘200’, ‘300’, ‘600’,
‘1200’, ‘1800’, ‘2400’, ‘4800’, ‘9600’, '19200', '38400', '57600', '115200', and '230400'.
Supported parity values are 'None', 'Odd', 'Even', 'Mark' and 'Space'.
Supported data-bits values are '8', '7', '6' and '5'.
Supported stop-bits values are '1', '1.5' and '2'.
Supported flow-control values are 'Hardware', 'Software' and 'None'.

Additionally, before any port can function properly, the mode of the port needs to be set. Any port can be
set to run in one of the five possible modes: [Console Server mode | Device mode | SDT mode | Terminal
server mode | Serial bridge mode]. All these modes are mutually exclusive.

Console Server mode
The command to set the port in portmanager mode:

config -s config.ports.port5.mode=portmanager

To set the following optional config elements for this mode:

Data accumulation period 100 ms
Escape character % (default is ~)
log level 2 (default is 0)
Shell power command menu Enabled
RFC2217 access Enabled
Limit port to 1 connection Enabled
SSH access Enabled
TCP access Enabled
telnet access Disabled
Unauthorized telnet access Disabled
config -s config.ports.port5.delay=100
config -s config.ports.port5.escapechar=%
config -s config.ports.port5.loglevel=2
config -s config.ports.port5.powermenu=on
config -s config.ports.port5.rfc2217=on
config -s config.ports.port5.singleconn=on
config -s config.ports.port5.ssh=on
config -s config.ports.port5.tcp=on
config -d config.ports.port5.telnet
config -d config.ports.port5.unauthtel

Device Mode
For a device mode port, set the port type to either ups, rpc, or enviro:

config -s config.ports.port5.device.type=[ups | rpc | enviro]

For port 5 as a UPS port:

config -s config.ports.port5.mode=reserved

 CLI and Scripting Reference

For port 5 as an RPC port:

config -s config.ports.port5.mode=powerman

For port 5 as an Environmental port:

config -s config.ports.port5.mode=reserved

SDT mode
To enable access over SSH to a host connected to serial port 5:

config -s config.ports.port5.mode=sdt
config -s config.ports.port5.sdt.ssh=on

To configure a username and password when accessing this port with Username = user1 and Password =
secret:

config -s config.ports.port#.sdt.username=user1
config -s config.ports.port#.sdt.password=secret

Terminal server mode
Enable a TTY login for a local terminal attached to serial port 5:

config -s config.ports.port5.mode=terminal
config -s config.ports.port5.terminal=[vt220 | vt102 | vt100 | linux | ansi]

The default terminal is vt220

Serial bridge mode
Create a network connection to a remote serial port via RFC-2217 on port 5:

config -s config.ports.port5.mode=bridge

Optional configurations for the network address of RFC-2217 server of 192.168.3.3 and TCP port used by
the RFC-2217 service = 2500:

config -s config.ports.port5.bridge.address=192.168.3.3
config -s config.ports.port5.bridge.port=2500

To enable RFC-2217 access: # config -s config.ports.port5.bridge.rfc2217=on

To redirect the serial bridge over an SSH tunnel to the server: # config -s
config.ports.port5.bridge.ssh.enabled=on

Syslog settings
Additionally, the global system log settings can be set for any specific port, in any mode:

config -s config.ports.port#.syslog.facility='facility'
'facility' can be:
 Default
 local 0-7
 auth
 authpriv
 cron
 daemon
 ftp
 kern
 lpr
 mail

Chapter 1: Command Line Configuration

12

 news
 user
 uucp
config -s config.ports.port#.syslog.priority='priority'
'priority' can be:
 Default
 warning
 notice
 Info
 error
 emergency
 debug
 critical
 alert

1.1.2 Adding and removing Users
Firstly, determine the total number of existing Users (if you have no existing Users you can assume this is
0):

config -g config.users.total

This command should display config.users.total 1. Note that if you see config.users.total this means you
have 0 Users configured.

Your new User will be the existing total plus 1. So if the previous command gave you 0 then you start with
user number 1, if you already have 1 user your new user will be number 2 etc.

To add a user (with Username=John, Password=secret and Description =mySecondUser) issue the
commands:

config -s config.users.total=2 (assuming we already have 1 user configured)
config -s config.users.user2.username=John
config -s config.users.user2.description=mySecondUser
config -P config.users.user2.password

NOTE: The -P parameter will prompt the user for a password, and encrypt it. In fact, the value of any config
element can be encrypted using the -P parameter, but only encrypted user passwords and system
passwords are supported. If any other element value were to be encrypted, the value will become
inaccessible and will have to be re-set.

To add this user to specific groups (admin/users):

config -s config.users.user2.groups.group1='groupname'
config -s config.users.user2.groups.group2='groupname2'
etc...

To give this user access to a specific port:

config -s config.users.user2.port1=on
config -s config.users.user2.port2=on
config -s config.users.user2.port5=on
etc...

To remove port access:

config -s config.users.user2.port1='' (the value is left blank)
or simply:
config -d config.users.user2.port1

 CLI and Scripting Reference

The port number can be anything from 1 to 48, depending on the available ports on the specific
console server.

For example assume we have an RPC device connected to port 1 on the console server and the RPC is
configured. To give this user access to RPC outlet number 3 on the RPC device, run the 2 commands
below:

config -s config.ports.port1.power.outlet3.users.user2=John
config -s config.ports.port1.power.outlet3.users.total=2 (total number of users that have access
to this outlet)

If more users are given access to this power outlet, then increment the
'config.ports.port1.power.outlet3.users.total' element accordingly.

To give this user access to network host 5 (assuming the host is configured):

config -s config.sdt.hosts.host5.users.user1=John
config -s config.sdt.hosts.host5.users.total=1 (total number of users having access to host)

To give another user called 'Peter' access to the same host:

config -s config.sdt.hosts.host5.users.user2=Peter
config -s config.sdt.hosts.host5.users.total=2 (total number of users having access to host)

To edit any of the user element values, use the same approach as when adding user elements i.e. use the
'-s' parameter. If any of the config elements do not exist, they will automatically be created.

To delete the user called John, use the delete-node script:

./delete-node config.users.user2

The following command will synchronize the live system with the new configuration:

config -r users

1.1.3 Adding and removing user Groups
The console server is configured with a few default user groups (even though only two of these groups are
visible in the Management Console GUI). To find out how many groups are already present:

config -g config.groups.total

Assume this value is six. Make sure to number any new groups you create from seven onwards.

To add a custom group to the configuration with Group name=Group7, Group description=MyGroup and
Port access= 1,5 you’d issue the commands:

config -s config.groups.group7.name=Group7
config -s config.groups.group7.description=MyGroup
config -s config.groups.total=7
config -s config.groups.group7.port1=on
config -s config.groups.group7.port5=on

Assume we have an RPC device connected to port 1 on the console manager, and the RPC is configured.
To give this group access to RPC outlet number 3 on the RPC device, run the two commands below:

config -s config.ports.port1.power.outlet3.groups.group1=Group7
config -s config.ports.port1.power.outlet3.groups.total=1 (total number of groups that have access
to this outlet)

If more groups are given access to this power outlet, then increment the
'config.ports.port1.power.outlet3.groups.total' element accordingly.

Chapter 1: Command Line Configuration

14

To give this group access to network host 5:

config -s config.sdt.hosts.host5.groups.group1=Group7
config -s config.sdt.hosts.host5.groups.total=1 (total number of groups having access to host)

To give another group called 'Group8' access to the same host:

config -s config.sdt.hosts.host5.groups.group2=Group8
config -s config.sdt.hosts.host5.groups.total=2 (total number of users having access to host)

To delete the group called Group7, use the following command:

rmuser Group7

Attention: The rmuser script is a generic script to remove any config element from config.xml correctly.
However, any dependencies or references to this group will not be affected. Only the group details are
deleted. The administrator is responsible for going through config.xml and removing group dependencies
and references manually, specifically if the group had access to a host or RPC device.

The following command will synchronize the live system with the new configuration:

config -a

1.1.4 Authentication
To change the type of authentication for the console server:

config -s config.auth.type='authtype'

'authtype' can be:
 Local
 LocalTACACS
 TACACS
 TACACSLocal
 TACACSDownLocal
 LocalRADIUS
 RADIUS
 RADIUSLocal
 RADIUSDownLocal
 LocalLDAP
 LDAP
 LDAPLocal
 LDAPDownLocal

To configure TACACS authentication:

config -s config.auth.tacacs.auth_server='comma separated list' (list of remote authentiction and
authorization servers.)
config -s config.auth.tacacs.acct_server='comma separated list' (list of remote accounting
servers. If unset, Authentication and Authorization Server Address will be used.)
config -s config.auth.tacacs.password='password'

To configure RADIUS authentication:

config -s config.auth.radius.auth_server='comma separated list' (list of remote authentiction and
authorization servers.)
config -s config.auth.radius.acct_server='comma separated list' (list of remote accounting servers.
If unset, Authentication and Authorization Server Address will be used.)
config -s config.auth.radius.password='password'

To configure LDAP authentication:

 CLI and Scripting Reference

config -s config.auth.ldap.server='comma separated list' (list of remote servers.)
config -s config.auth.ldap.basedn='name' (The distinguished name of the search base. For
example: dc=my-company,dc=com)
config -s config.auth.ldap.binddn='name' (The distinguished name to bind to the server with. The
default is to bind anonymously.)
config -s config.auth.radius.password='password'

The following command will synchronize the live system with the new configuration:

config -r auth

1.1.5 Network Hosts
To determine the total number of currently configured hosts:

config -g config.sdt.hosts.total

Assume this value is equal to 3. If you add another host, make sure to increment the total number of hosts
from 3 to 4:

config -s config.sdt.hosts.total=4

If the output is config.sdt.hosts.total then assume 0 hosts are configured.

Add power device host
To add a UPS/RPC network host with the following details:

IP address / DNS name 192.168.2.5
Host name remoteUPS
Description UPSroom3
Type UPS
Allowed services ssh port 22 and https port 443
Log level for services 0

Issue the commands below:

config -s config.sdt.hosts.host4.address=192.168.2.5
config -s config.sdt.hosts.host4.name=remoteUPS
config -s config.sdt.hosts.host4.description=UPSroom3
config -s config.sdt.hosts.host4.device.type=ups
config -s config.sdt.hosts.host4.tcpports.tcpport1=22
config -s config.sdt.hosts.host4.tcpports.tcpport1.loglevel=0
config -s config.sdt.hosts.host4.udpports.udpport2=443
config -s config.sdt.hosts.host4.udpports.udpport2.loglevel=0

The loglevel can have a value of 0 or 1.

The default services that should be configured are: 22/tcp (ssh), 23/tcp (telnet), 80/tcp (http), 443/tcp (https),
1494/tcp (ica), 3389/tcp (rdp), 5900/tcp (vnc)

Add other network host
To add any other type of network host with the following details:

IP address / DNS name 192.168.3.10
Host name OfficePC
Description MyPC
Allowed sevices ssh port 22,https port 443

Chapter 1: Command Line Configuration

16

log level for services 1

Issue the commands below. If the Host is not a PDU or UPS power device or a server with IPMI power
control then leave the device type blank:

config -s config.sdt.hosts.host4.address=192.168.3.10
config -s config.sdt.hosts.host4.description=MyPC
config -s config.sdt.hosts.host4.name=OfficePC
config -s config.sdt.hosts.host4.device.type='' (leave this value blank)
config -s config.sdt.hosts.host4.tcpports.tcpport1=22
config -s config.sdt.hosts.host4.tcpports.tcpport1.loglevel=1
config -s config.sdt.hosts.host4.udpports.tcppport2=443
config -s config.sdt.hosts.host4.udpports.tcpport2.loglevel=1

If you want to add the new host as a managed device, make sure to use the current total number of managed
devices + 1, for the new device number.

To get the current number of managed devices:

config -g config.devices.total

Assuming we already have one managed device, our new device will be device 2. Issue the following
commands:

config -s config. devices.device2.connections.connection1.name=192.168.3.10
config -s config. devices.device2.connections.connection1.type=Host
config -s config. devices.device2.name=OfficePC
config -s config. devices.device2.description=MyPC
config -s config.devices.total=2

The following command will synchronize the live system with the new configuration:

config -hosts

1.1.6 Trusted Networks
You can further restrict remote access to serial ports based on the source IP address. To configure this
via the command line you need to do the following:

Determine the total number of existing trusted network rules (if you have no existing rules) you can
assume this is 0

config -g config.portaccess.total

This command should display config.portaccess.total 1

Note that if you see config.portaccess.total this means you have 0 rules configured.

Your new rule will be the existing total plus 1. So if the previous command gave you 0 then you start with
rule number 1. If you already have 1 rule your new rule will be number 2 etc.

If you want to restrict access to serial port 5 to computers from a single class C network (192.168.5.0 say)
you need to issue the following commands (assuming you have a previous rule in place).

Add a trusted network:

config -s config.portaccess.rule2.address=192.168.5.0
config -s "config.portaccess.rule2.description=foo bar"
config -s config.portaccess.rule2.netmask=255.255.255.0
config -s config.portaccess.rule2.port5=on
config -s config.portaccess.total=2

The following command will synchronize the live system with the new configuration:

 CLI and Scripting Reference

config -r serialconfig

1.1.7 Cascaded Ports
 To add a new slave device with the following settings:

IP address/DNS name 192.168.0.153
Description CM in office 42
Label cm7116-5
Number of ports 16

The following commands must be issued:

config -s config.cascade.slaves.slave1.address=192.168.0.153
config -s "config.cascade.slaves.slave1.description=CM in office 42"
config -s config.cascade.slaves.slave1.label=cm7116-5
config -s config.cascade.slaves.slave1.ports=16

 The total number of slaves must also be incremented. If this is the first slave being added, type:

config -s config.cascade.slaves.total=1

Increment this value when adding more slaves.

NOTE: If a slave is added using the CLI, then the master SSH public key will need to be manually copied
to every slave device before cascaded ports will work.

The following command will synchronize the live system with the new configuration:

config -r cascade

1.1.8 UPS Connections
Managed UPSes
Before adding a managed UPS, make sure that at least 1 port has been configured to run in 'device mode',
and that the device is set to 'ups'.

To add a managed UPS with the following values:

Connected via Port 1
UPS name My UPS
Description UPS in room 5
Username to connect to UPS User2
Password to connect to UPS secret
shutdown order 2 (0 shuts down first)
Driver genericups
Driver option - option option
Driver option - argument argument
Logging Enabled
Log interval 2 minutes
Run script when power is critical Enabled

config -s config.ups.monitors.monitor1.port=/dev/port01
If the port number is higher than 9, eg port 13, enter:
config -s config.ups.monitors.monitor1.port=/dev/port13

config -s "config.ups.monitors.monitor1.name=My UPS"
config -s "config.ups.monitors.monitor1.description=UPS in room 5"

Chapter 1: Command Line Configuration

18

config -s config.ups.monitors.monitor1.username=User2
config -s config.ups.monitors.monitor1.password=secret
config -s config.ups.monitors.monitor1.sdorder=2
config -s config.ups.monitors.monitor1.driver=genericups
config -s config.ups.monitors.monitor1.options.option1.opt=option
config -s config.ups.monitors.monitor1.options.option1.arg=argument
config -s config.ups.monitors.monitor1.options.total=1
config -s config.ups.monitors.monitor1.log.enabled=on
config -s config.ups.monitors.monitor1.log.interval=2
config -s config.ups.monitors.monitor1.script.enabled=on

Make sure to increment the total monitors:

config -s config.ups.monitors.total=1

The 5 commands below will add the UPS to 'Managed devices. Assuming there are already 2 managed
devices configured:

config -s "config.devices.device3.connections.connection1.name=My UPS"
config -s "config.devices.device3.connections.connection1.type=UPS Unit"
config -s "config.devices.device3.name=My UPS"
config -s "config.devices.device3.description=UPS in toom 5"
config -s config.devices.total=3

To delete this managed UPS:

config -d config.ups.monitors.monitor1

Decrement monitors.total when deleting a managed UPS

Remote UPSes
To add a remote UPS with the following details (assuming this is our first remote UPS):

UPS name oldUPS
Description UPS in room 2
Address 192.168.50.50
Log status Disabled
Log rate 240 seconds
Run shutdown script Enabled

config -s config.ups.remotes.remote1.name=oldUPS
config -s "config.ups.remotes.remote1.description=UPS in room 2"
config -s config.ups.remotes.remote1.address=192.168.50.50
config -d config.ups.remotes.remote1.log.enabled
config -s config.ups.remotes.remote1.log.interval=240
config -s config.ups.remotes.remote1.script.enabled=on
config -s config.ups.remotes.total=1

The following command will synchronize the live system with the new configuration:

config -a

1.1.9 RPC Connections
You can add an RPC connection from the command line but it is not recommended that you do so because
of dependency issues.

 CLI and Scripting Reference

However FYI before adding an RPC the Management Console GUI code makes sure that at least 1 port
has been configured to run in 'device mode', and that the device is set to 'rpc'.

To add an RPC with the following values:

RPC type APC 7900
Connected via Port 2
UPS name MyRPC
Description RPC in room 5
Login name for device rpclogin
Login password for device secret
SNMP community v1 or v2c
Logging Enabled
Log interval 600 second
Number of power outlets 4 (depends on the type/model of the RPC)

config -s config.ports.port2.power.type=APC 7900
config -s config.ports.port2.power.name=MyRPC
config -s "config.ports.port2.power.description=RPC in room 5"
config -s config.ports.port2.power.username=rpclogin
config -s config.ports.port2.power.password=secret
config -s config.ports.port2.power.snmp.community=v1
config -s config.ports.port2.power.log.enabled=on
config -s config.ports.port2.power.log.interval=600
config -s config.ports.port2.power.outlets=4

The following five commands are used by the Management Console to add the RPC to 'Managed Devices':

config -s config.devices.device3.connections.connection1.name=myRPC
config -s "config.devices.device3.connections.connection1.type=RPC Unit"
config -s config.devices.device3.name=myRPC
config -s "config.devices.device3.description=RPC in room 5"
config -s config.devices.total=3

The following command will synchronize the live system with the new configuration:

config -a

1.1.10 Environmental
To configure an environmental monitor with the following details:

Monitor name Envi4
Monitor Description Monitor in room 5
Temperature offset 2
Humidity offset 5
Enable alarm 1 ? yes
Alarm 1 label door alarm
Enable alarm 2 ? yes
Alarm 2 label window alarm
Logging enabled ? yes
Log interval 120 seconds

config -s config.ports.port3.enviro.name=Envi4
config -s "config.ports.port3.enviro.description=Monitor in room 5"
config -s config.ports.port3.enviro.offsets.temp=2

Chapter 1: Command Line Configuration

20

config -s config.ports.port3.enviro.offsets.humid=5
config -s config.ports.port3.enviro.alarms.alarm1.alarmstate=on
config -s config.ports.port3.enviro.alarms.alarm1.label=door alarm
config -s config.ports.port3.enviro.alarms.alarm2.alarmstate=on
config -s config.ports.port3.enviro.alarms.alarm2.label=window alarm
config -s config.ports.port3.enviro.alarms.total=2
config -s config.ports.port3.enviro.log.enabled=on
config -s config.ports.port3.enviro.log.interval=120

It is important to assign alarms.total=2 even if they are off.

The following 5 commands will add the environmental monitor to 'Managed devices':

To get the total number of managed devices:

config -g config.devices.total

Make sure to use the total + 1 for the new device below:

config -s config. devices.device5.connections.connection1.name=Envi4
config -s "config. devices.device5.connections.connection1.type=EMD Unit"
config -s config. devices.device5.name=Envi4
config -s "config. devices.device5.description=Monitor in room 5"
config -s config.devices.total=5

The following command will synchronize the live system with the new configuration:

config -a

1.1.11 Managed Devices
To add a managed device: (also see UPS, RPC connections and Environmental)

config -s "config.devices.device8.name=my device"
config -s "config.devices.device8.description=The eighth device"
config -s "config.devices.device8.connections.connection1.name=my device"
config -s config.devices.device8.connections.connection1.type=[serial | Host | UPS | RPC]
config -s config.devices.total=8 (decrement this value when deleting a managed device)

To delete the above managed device:

config -d config.devices.device8

The following command will synchronize the live system with the new configuration:

config -a

1.1.12 Port Log
To configure serial/network port logging:

config -s config.eventlog.server.address='remote server ip address'
config -s config.eventlog.server.logfacility='facility'

'facility' can be:
 Daemon
 Local 0-7
 Authentication
 Kernel
 User
 Syslog

 CLI and Scripting Reference

 Mail
 News
 UUCP

config -s config.eventlog.server.logpriority='priority'

'priority' can be:
 Info
 Alert
 Critical
 Debug
 Emergency
 Error
 Notice
 Warning

Assume the remote log server needs a username 'name1' and password 'secret':

config -s config.eventlog.server.username=name1
config -s config.eventlog.server.password=secret

To set the remote path as '/opengear/logs' to save logged data:

config -s config.eventlog.server.path=/opengear/logs
config -s config.eventlog.server.type=[none | syslog | nfs | cifs | usb]

If the server type is set to usb, none of the other values need to be set. The mount point for storing on a
remote USB device is /var/run/portmanager/logdir

The following command will synchronize the live system with the new configuration:
config -a

1.1.13 Alerts
You can add an email, SNMP or NAGIOS alert by following the steps below.

The general settings for all alerts
Assume this is our second alert, and we want to send alert emails to john@opengear.com and sms's to
peter@opengear.com:

config -s config.alerts.alert2.description=MySecondAlert
config -s config.alerts.alert2.email=john@opengear.com
config -s config.alerts.alert2.email2=peter@opengear.com

To use NAGIOS to notify of this alert

config -s config.alerts.alert2.nsca.enabled=on

To use SNMP to notify of this alert

config -s config.alerts.alert2.snmp.enabled=on

Increment the total alerts:

config -s config.alerts.total=2

Below are the specific settings depending on the type of alert required:

Connection Alert
To trigger an alert when a user connects to serial port 5 or network host 3:

Chapter 1: Command Line Configuration

22

config -s config.alerts.alert2.host3='host name'
config -s config.alerts.alert2.port5=on
config -s config.alerts.alert2.sensor=temp
config -s config.alerts.alert2.signal=DSR
config -s config.alerts.alert2.type=login

Signal Alert
To trigger an alert when a signal changes state on port 1:

config -s config.alerts.alert2.port1=on
config -s config.alerts.alert2.sensor=temp
config -s config.alerts.alert2.signal=[DSR | DCD | CTS]
config -s config.alerts.alert2.type=signal

Pattern Match Alert
To trigger an alert if the regular expression '.*0.0% id' is found in serial port 10's character stream.

config -s "config.alerts.alert2.pattern=.*0.0% id"
config -s config.alerts.alert2.port10=on
config -s config.alerts.alert2.sensor=temp
config -s config.alerts.alert2.signal=DSR
config -s config.alerts.alert2.type=pattern

UPS Power Status Alert
To trigger an alert when myUPS (on localhost) or thatUPS (on remote host 192.168.0.50) power status
changes between on line, on battery and low battery.

config -s config.alerts.alert2.sensor=temp
config -s config.alerts.alert2.signal=DSR
config -s config.alerts.alert2.type=ups
config -s config.alerts.alert2.ups1=myUPS@localhost
config -s config.alerts.alert2.ups2=thatUPS@192.168.0.50

Environmental and Power Sensor Alert

config -s config.alerts.alert2.enviro.high.critical='critical value'
config -s config.alerts.alert2.enviro.high.warning='warning value'
config -s config.alerts.alert2.enviro.hysteresis='value'
config -s config.alerts.alert2.enviro.low.critical='critical value'
config -s config.alerts.alert2.enviro.low.warning='warning value'
config -s config.alerts.alert2.enviro1='Enviro sensor name'
config -s config.alerts.alert2.outlet#='RPCname'.outlet#
'alert2.outlet#' increments sequentially with each added outlet. The second 'outlet#' refers to the
specific RPC power outlets.
config -s config.alerts.alert2.rpc#='RPC name'
config -s config.alerts.alert2.sensor=[temp | humid | load | charge]
config -s config.alerts.alert2.signal=DSR
config -s config.alerts.alert2.type=enviro
config -s config.alerts.alert2.ups1='UPSname@hostname'

Example1: To configure a temperature sensor alert for a sensor called 'SensorInRoom42':

config -s config.alerts.alert2.sensor=temp
config -s config.alerts.alert2.enviro.high.critical=60
config -s config.alerts.alert2.enviro.high.warning=50

 CLI and Scripting Reference

config -s config.alerts.alert2.enviro.hysteresis=2
config -s config.alerts.alert2.enviro.low.critical=5
config -s config.alerts.alert2.enviro.low.warning=10
config -s config.alerts.alert2.enviro1=SensorInRoom42
config -s config.alerts.alert2.signal=DSR
config -s config.alerts.alert2.type=enviro

Example2: To configure a load sensor alert for outlets 2 and 4 for an RPC called 'RPCInRoom20':

config -s config.alerts.alert2.outlet1='RPCname'.outlet2
config -s config.alerts.alert2.outlet2='RPCname'.outlet4
config -s config.alerts.alert2.enviro.high.critical=300
config -s config.alerts.alert2.enviro.high.warning=280
config -s config.alerts.alert2.enviro.hysteresis=20
config -s config.alerts.alert2.enviro.low.critical=50
config -s config.alerts.alert2.enviro.low.warning=70
config -s config.alerts.alert2.rpc1=RPCInRoom20
config -s config.alerts.alert2.sensor=load
config -s config.alerts.alert2.signal=DSR
config -s config.alerts.alert2.type=enviro

Alarm Sensor Alert
To set an alert for 'doorAlarm' and 'windowAlarm' which are two alarms connected to an environmental
sensor called 'SensorInRoom3'. Both alarms are disabled on Mondays from 8:15am to 2:30pm:

config -s config.alerts.alert2.alarm1=SensorInRoom3.alarm1 (doorAlarm)
config -s config.alerts.alert2.alarm1=SensorInRoom3.alarm2 (windowAlarm)
config -s config.alerts.alert2.alarmrange.mon.from.hour=8
config -s config.alerts.alert2.alarmrange.mon.from.min=15
config -s config.alerts.alert2.alarmrange.mon.until.hour=14
config -s config.alerts.alert2.alarmrange.mon.until.min=30
config -s config.alerts.alert2.description='description'
config -s config.alerts.alert2.sensor=temp
config -s config.alerts.alert2.signal=DSR
config -s config.alerts.alert2.type=alarm

To enable an alarm for the entire day:

config -s config.alerts.alert2.alarmrange.mon.from.hour=0
config -s config.alerts.alert2.alarmrange.mon.from.min=0
config -s config.alerts.alert2.alarmrange.mon.until.hour=0
config -s config.alerts.alert2.alarmrange.mon.until.min=0

The following command will synchronize the live system with the new configuration:

config -r alerts

1.1.14 SMTP & SMS
To set-up an SMTP mail or SMS server with the following details:

Outgoing server address mail.opengear.com
Secure connection type SSL
Sender John@opengear.com
Server username john
Server password secret

Chapter 1: Command Line Configuration

24

Subject line SMTP alerts

config -s config.system.smtp.server=mail.opengear.com
config -s config.system.smtp.encryption=SSL (can also be TLS or None)
config -s config.system.smtp.sender=John@opengear.com
config -s config.system.smtp.username=john
config -s config.system.smtp.password=secret
config -s config.system.smtp.subject=SMTP alerts

To set-up an SMTP SMS server with the same details as above:

config -s config.system.smtp.server2=mail.opengear.com
config -s config.system.smtp.encryption2=SSL (can also be TLS or None)
config -s config.system.smtp.sender2=John@opengear.com
config -s config.system.smtp.username2=john
config -s config.system.smtp.password2=secret
config -s config.system.smtp.subject2=SMTP alerts

The following command will synchronize the live system with the new configuration:

config -a

1.1.15 SNMP
To set-up the SNMP agent on the device:

config -s config.system.snmp.protocol=[UDP | TCP]
config -s config.system.snmp.trapport='port number' (default is 162)
config -s config.system.snmp.address='NMS IP network address'
config -s config.system.snmp.commnity='community name' (v1 and v2c only)
config -s config.system.snmp.engineid='ID' (v3 only)
config -s config.system.snmp.username='username' (v3 only)
config -s config.system.snmp.password='password' (v3 only)
config -s config.system.snmp.version=[1 | 2c | 3]

The following command will synchronize the live system with the new configuration:

config -a

1.1.16 Administration
To change the administration settings to:

System Name og.mydomain.com
System Password (root account) secret
Description Device in office 2

config -s config.system.name=og.mydomain.com
config -P config.users.user1.password (will prompt user for a password)
config -s "config.system.location=Device in office 2"

NOTE: The -P parameter will prompt the user for a password, and encrypt it. In fact, the value of any
config element can be encrypted using the -P parameter, but only encrypted user passwords and system
passwords are supported. If any other element value were to be encrypted, the value will become
inaccessible and will have to be re-set.

An alternative to the second command above is:

/etc/scripts/user-mod -P root

 CLI and Scripting Reference

The following command will synchronize the live system with the new configuration:

config –a

1.1.17 IP settings
To configure the primary network interface with static settings:

IP address 192.168.0.23
Netmask 255.255.255.0
Default gateway 192.168.0.1
DNS server 1 192.168.0.1
DNS server 2 192.168.0.2

config -s config.interfaces.wan.address=192.168.0.23
config -s config.interfaces.wan.netmask=255.255.255.0
config -s config.interfaces.wan.gateway=192.168.0.1
config -s config.interfaces.wan.dns1=192.168.0.1
config -s config.interfaces.wan.dns2=192.168.0.2
config -s config.interfaces.wan.mode=static
config -s config.interfaces.wan.media=[Auto | 100baseTx-FD | 100baseTx-HD | 10baseT-HD]
10baseT-FD

To enable bridging between all interfaces:

config -s config.system.bridge.enabled=on

To enable IPv6 for all interfaces

config -s config.system.ipv6.enabled=on

To configure the management lan interface, use the same commands as above but replace:

config.interfaces.wan, with config.interfaces.lan

To enable the management lan interface run the following command:

 config -d config.interfaces.lan.disabled
config -r ipconfig

Note: Not all devices have a management LAN interface.

To configure a failover device in case of an outage:

config -s config.interfaces.wan.failover.address1='ip address'
config -s config.interfaces.wan.failover.address2='ip address'
config -s config.interfaces.wan.failover.interface=[eth1 | console | modem]

The network interfaces can also be configured automatically:

config -s config.interfaces.wan.mode=dhcp
config -s config.interfaces.lan.mode=dhcp

The following command will synchronize the live system with the new configuration:

/bin/config –-run=ipconfig

The following command will synchronize the live system with the new configuration:

config -r ipconfig

Chapter 1: Command Line Configuration

26

1.1.18 Date & Time settings
To enable NTP using a server at pool.ntp.org issue the following commands:

config -s config.ntp.enabled=on
config -s config.ntp.server=pool.ntp.org

Alternatively, you can manually change the clock settings:

To change running system time:

date 092216452005.05 Format is MMDDhhmm[[CC]YY][.ss]

Then the following command will save this new system time to the hardware clock:

/bin/hwclock --systohc

Alternatively, to change the hardware clock:

/bin/hwclock --set --date=092216452005.05 Format is MMDDhhmm[[CC]YY][.ss]

Then the following command will save this new hardware clock time as the system time:

/bin/hwclock --hctosys

To change the timezone:

config -s config.system.timezone=US/Eastern

The following command will synchronize the live system with the new configuration:

config -r time

1.1.19 Dial-in settings
To enable dial-in access on the DB9 serial port from the command line with the following attributes:

Local IP Address 172.24.1.1
Remote IP Address 172.24.1.2
Authentication Type: MSCHAPv2
Serial Port Baud Rate: 115200
Serial Port Flow Control: Hardware
Custom Modem Initialization: ATQ0V1H0
Callback phone 0800223665
User to dial as user1
Password for user secret

Run the following commands:

config -s config.console.ppp.localip=172.24.1.1
config -s config.console.ppp.remoteip=172.24.1.2
config -s config.console.ppp.auth=MSCHAPv2
config -s config.console.speed=115200
config -s config.console.flow=Hardware
config -s config.console.initstring=ATQ0V1H0
config -s config.console.ppp.enabled=on
config -s config.console.ppp.callback.enabled=on
config -s config.console.ppp.callback.phone1=0800223665
config -s config.console.ppp.username=user1
config -s config.console.ppp.password=secret

To make the dialed connection the default route:

 CLI and Scripting Reference

config -s config.console.ppp.defaultroute=on

Please note that supported authentication types are 'None', 'PAP', 'CHAP' and 'MSCHAPv2'.
Supported serial port baud-rates are '9600', '19200', '38400', '57600', '115200', and '230400'.
Supported parity values are 'None', 'Odd', 'Even', 'Mark' and 'Space'.
Supported data-bits values are '8', '7', '6' and '5'.
Supported stop-bits values are '1', '1.5' and '2'.
Supported flow-control values are 'Hardware', 'Software' and 'None'.

If you do not wish to use out-of-band dial-in access please note that the procedure for enabling start-up
messages on the console port is covered in Chapter 2 - Accessing the Console Port.

The following command will synchronize the live system with the new configuration:

config –a

1.1.20 DHCP server
To enable the DHCP server on the console management LAN, with settings:

Default lease time 200000 seconds
Maximum lease time 300000 seconds
DNS server1 192.168.2.3
DNS server2 192.168.2.4
Domain name company.com
Default gateway 192.168.0.1
IP pool 1 start address 192.168.0.20
IP pool 1 end address 192.168.0.100
Reserved IP address 192.168.0.50
MAC to reserve IP for 00:1e:67:82:72:d9
Name to identify this host John-PC

Issue the commands:

config -s config.interfaces.lan.dhcpd.enabled=on
config -s config.interfaces.lan.dhcpd.defaultlease=200000
config -s config.interfaces.lan.dhcpd.maxlease=300000
config -s config.interfaces.lan.dhcpd.dns1=192.168.2.3
config -s config.interfaces.lan.dhcpd.dns2=192.168.2.4
config -s config.interfaces.lan.dhcpd.domain=company.com
config -s config.interfaces.lan.dhcpd.gateway=192.168.0.1
config -s config.interfaces.lan.dhcpd.pools.pool1.start=192.168.0.20
config -s config.interfaces.lan.dhcpd.pools.pool1.end=192.168.0.100
config -s config.interfaces.lan.dhcpd.pools.total=1
config -s config.interfaces.lan.dhcpd.staticips.staticip1.ip=192.168.0.50
config -s config.interfaces.lan.dhcpd.staticips.staticip1.mac=00:1e:67:82:72:d9
config -s config.interfaces.lan.dhcpd.staticips.staticip1.host=John-PC
config -s config.interfaces.lan.dhcpd.staticips.total=1

The following command will synchronize the live system with the new configuration:

config –a

1.1.21 Services
You can manually enable or disable network servers from the command line. For example if you wanted to
guarantee the following server configuration:

Chapter 1: Command Line Configuration

28

HTTP Server Enabled
HTTPS Server Disabled
Telnet Server Disabled
SSH Server Enabled
SNMP Server Disabled
Ping Replies (Respond to ICMP echo requests) Disabled
TFTP server Enabled

config -s config.services.http.enabled=on
config -d config.services.https.enabled
config -d config.services.telnet.enabled
config -s config.services.ssh.enabled=on
config -d config.services.snmp.enabled
config -d config.services.pingreply.enabled
config -s config.services.tftp.enabled=on

To set secondary port ranges for any service

config -s config.services.telnet.portbase='port base number' Default: 2000
config -s config.services.ssh.portbase='port base number' Default: 3000
config -s config.services.tcp.portbase='port base number' Default: 4000
config -s config.services.rfc2217.portbase='port base number' Default: 5000
config -s config.services.unauthtel.portbase='port base number Default: 6000

The following command will synchronize the live system with the new configuration:

config -a

Configure SSH MaxStartups

To set and apply MaxStartups specify three colon separated values ''start:rate:full'' (e.g. "10:20:50"):

config -s config.services.ssh.maxstartups=10:20:50
config -r sshconfig

To reset MaxStartups to default (10:30:60):

config -d config.services.ssh.maxstartups
config -r sshconfig

To confirm change to /etc/config/sshd_config

grep "^MaxStartups" /etc/config/sshd_config
MaxStartups 2:4:6

1.1.22 NAGIOS
To configure NAGIOS with the following settings:

NAGIOS host name cm7116 (Name of this system)
NAGIOS host address 192.168.0.1 (IP to find this device at)
NAGIOS server address 192.168.0.10 (upstream NAGIOS server)
Enable SDT for NAGIOS ext. Enabled

 CLI and Scripting Reference

SDT gateway address 192.168.0.1 (defaults to host address)
Prefer NRPE over NSCA Disabled (defaults to Disabled)

config -s config.system.nagios.enabled=on
config -s config.system.nagios.name=cm7116
config -s config.system.nagios.address=192.168.0.1
config -s config.system.nagios.server.address=192.168.0.10
config -s config.system.nagios.sdt.disabled=on (disables SDT for nagios extensions)
config -s config.system.nagios.sdt.address=192.168.0.1
config -s config.system.nagios.nrpe.prefer=''

To configure NRPE with following settings:

NRPE port 5600 (port to listen on for nrpe. Defaults to 5666)
NRPE user user1 (User to run as. Defaults to nrpe)
NRPE group group1 (Group to run as. Defaults to nobody)
Allow command arguments Enabled

config -s config.system.nagios.nrpe.enabled=on
config -s config.system.nagios.nrpe.port=5600
config -s config.system.nagios.user=user1
config -s config.system.nagios.nrpe.group=group1
config -s config.system.nagios.nrpe.cmdargs=on

To configure NSCA with the following settings:

NSCA encryption BLOWFISH (can be: [None | XOR | DES | TRPLEDES | CAST-
256 | BLOWFISH | TWOFISH | RIJNDAEL-256 | SERPENT | GOST]
NSCA password secret
NSCA check-in interval 5 minutes
NSCA port 5650 (defaults to 5667)
user to run as User1 (defaults to nsca)
group to run as Group1 (defaults to nobody)

config -s config.system.nagios.nsca.enabled=on
config -s config.system.nagios.nsca.encryption=BLOWFISH
config -s config.system.nagios.nsca.secret=secret
config -s config.system.nagios.nsca.interval=2
config -s config.system.nagios.nsca.port=5650
config -s config.system.nagios.nsca.user=User1
config -s config.system.nagios.nsca.group=Group1

The following command will synchronize the live system with the new configuration:

config –a

Chapter 2: Advanced Configuration

30

ADVANCED CONFIGURATION

Opengear console servers run the embedded Linux operating system. So Administrator class users can
configure the console server and monitor and manage attached serial console and host devices from the
command line using Linux commands and the config utility (see Chapter 1).

The Linux kernel in the console server also supports GNU bash shell script enabling the Administrator to
run custom scripts. This chapter presents a number of useful scripts and scripting tools including

• delete-node which is a general script for deleting users, groups, hosts, UPS's etc

• ping-detect which will run specified commands when a specific host stops responding to ping
requests

This chapter also covers how to perform advanced and custom management tasks using Opengear
commands, Linux commands, and open source tools embedded in the console server:

• portmanager serial port management

• raw data access to the ports and modems

• iptables modifications and updating IP filtering rules

• retrieving status information using SNMP and modifying SNMP with net-snmpd

• public key authenticated SSH communications

• SSL, configuring HTTPS and issuing certificates

• using pmpower for NUT and PowerMan power device management

• using IPMItools

• REST API which allows inspection of console servers

• CDK custom development kit

• sms server tools

• disable multicasting

2.1 Custom Scripting

The console server supports GNU bash shell commands (refer Appendix A) enabling the Administrator to
run custom scripts.

2.1.1 Custom script to run when booting
The /etc/config/rc.local script runs when the system boots. By default, this script file is empty. Use it to add
commands you to run at boot time

For example, if to display hello world:

#!/bin/sh
echo "Hello World!"

If this script has been copied from a Windows machine you may need to run the following command on
the script before bash can run:

dos2unix /etc/config/rc.local

You may find it useful to call a custom script from the /etc/config/rc.local file that runs whenever the
system is booted.

 CLI and Scripting Reference

2.1.2 Running custom scripts when alerts are triggered
When an alert is triggered, specific scripts are called. These scripts reside in /etc/scripts/.

Here are the default scripts that are run for each applicable alert:

- Connection alert (when a user connects or disconnects from a port or network host):
/etc/scripts/portmanager-user-alert (for port connections) or /etc/scripts/sdt-user-alert (for host
connections)

- Signal alert (when a signal on a port changes state): /etc/scripts/portmanager-signal-alert

- Pattern match alert (when a specific regular expression is found in the serial ports character stream):
/etc/scripts/portmanager-pattern-alert

- UPS status alert (when the UPS power status changes between on line, on battery, and low battery):
/etc/scripts/ups-status-alert

- Environmental, power and alarm sensor alerts(temperature, humidity, power load and battery charge
alerts): /etc/scripts/environmental-alert

- Interface failover alert: /etc/scripts/interface-failover-alert

Each script checks to see if you have created a custom script to run instead. The code that does this
check is shown below (an extract from the file /etc/scripts/portmanager-pattern-alert):

If there's a user-configured script, run it instead
scripts[0]="/etc/config/scripts/pattern-alert.${ALERT_PORTNAME}"
scripts[1]="/etc/config/scripts/portmanager-pattern-alert"
for ((i=0 ; i < ${#scripts[@]} ; i++)); do
 if [-f "${scripts[$i]}"]; then
 exec /bin/sh "${scripts[$i]}"
 fi
done

This code shows that there are two alternative scripts that can be run instead of the default one. This code
first checks whether a file "/etc/config/scripts/pattern-alert.${ALERT_PORTNAME}" exists. The variable
${ALERT_PORTNAME} must be replaced with "port01" or "port13" or whichever port the alert should run
for. If this file cannot be found, the script checks whether the file "/etc/config/scripts/portmanager-pattern-
alert" exists. If either of these files exists the script calls the exec command on the first file that it finds and
runs that custom file/script instead.

As an example, you can copy the /etc/scripts/portmanager-pattern-alert script file to
/etc/config/scripts/portmanager-pattern-alert:

cd /
mkdir /etc/config/scripts (if the directory does not already exist)
cp /etc/scripts/portmanager-pattern-alert /etc/config/scripts/portmanager-pattern-alert

The next step will be to edit the new script file. Firstly, open the file /etc/config/scripts/portmanager-pattern-
alert using vi (or any other editor), and remove the lines that check for a custom script (the code from above)
- this will prevent the new custom script from repeatedly calling itself. After these lines have been removed,
edit the file, or add any additional scripting to the file.

2.1.3 Example script - Power cycling on pattern match
For example, if we had an RPC (PDU) connected to port 1 on a console server and also have some
telecommunications device connected to port 2 and which is powered by the RPC outlet 3. Now assume
the telecom device transmits a character stream "EMERGENCY" out on its serial console port every time
that it encounters some specific error, and the only way to fix this error is to power cycle the telecom device.

The first step is to setup a pattern-match alert on port 2 to check for the pattern "EMERGENCY".

Chapter 2: Advanced Configuration

32

Next we need to create a custom script to deal with this alert:

cd /
mkdir /etc/config/scripts (if the directory does not already exist)
cp /etc/scripts/portmanager-pattern-alert /etc/config/scripts/portmanager-pattern-alert

Note: Make sure to remove the if statement (which checks for a custom script) from the new script, in order
to prevent an infinite loop.

The pmpower utility is used to send power commands to RPC device in order to power cycle our telecom
device:

pmpower -l port01 -o 3 cycle (The RPC is on serial port 1. The telecom device is powered by
RPC outlet 3)

We can now append this command to our custom script. This will guarantee that our telecom device will
be power cycled every time the console reads the "EMERGENCY" character stream on port 2.

2.1.4 Example script - Multiple email notifications on each alert
If you desire to send more than one email when an alert triggers, you have to create a replacement script
using the method described above and add the appropriate lines to your new script.

Currently, there is a script /etc/scripts/alert-email which gets run from within all the alert scripts (e.g.
portmanager-user-alert or environmental-alert). The alert-email script is responsible for sending the email.
The line which invokes the email script looks as follows:

/bin/sh /etc/scripts/alert-email $suffix &

To send another email to a single address or the same email to many recipients, edit the custom script
appropriately. You can follow the examples in any of the seven alert scripts listed above. In particular let’s
consider the portmanager-user-alert script. If you need to send the same alert email to more than one
email address, find the lines in the script responsible for invoking the alert-email script, then add the
following lines below the existing lines:

export TOADDR="emailaddress@domain.com"
/bin/sh /etc/scripts/alert-email $suffix &

These two lines assign a new email address to TOADDR and invoke the alert-email script in the
background.

2.1.5 Deleting configuration values from the CLI
The delete-node script is provided to help with deleting nodes from the command line. The "delete-node"
script takes one argument, the node name you want to delete (e.g. "config.users.user1" or
"config.sdt.hosts.host1").

So delete-node is a general script for deleting any node you desire (users, groups, hosts, UPS's etc) from
the command line. The script deletes the specified node and shuffles the remainder of the node values.

For example if we have five users configured and we use the script to delete user 3, then user 4 will
become user 3, and user 5 will become user 4.

This creates an obvious complication as this script does NOT check for any other dependencies that the
node being deleted may have had. So you are responsible for making sure that any references and
dependencies connected to the deleted node are removed or corrected in the config.xml file.

The script treats all nodes the same. The syntax to run the script is # ./delete-node {node name} so to
remove user 3:

./delete-node config.users.user3

The delete-node script

 CLI and Scripting Reference

#!/bin/bash
#User must provide the node to be removed. e.g. "config.users.user1"
Usage: delete-node {full node path}

if [$# != 1]
then
 echo "Wrong number of arguments"
 echo "Usage: delnode {full '.' delimited node path}"
 exit 2
fi

test for spaces
TEMP=`echo "$1" | sed 's/.* .*/N/'`
if ["$TEMP" = "N"]
then
 echo "Wrong input format"
 echo "Usage: delnode {full '.' delimited node path}"
 exit 2
fi

testing if node exists
TEMP=`config -g config | grep "$1"`
if [-z "$TEMP"]
then
 echo "Node $1 not found"
 exit 0
fi

LASTFIELD is the last field in the node path e.g. "user1"
ROOTNODE is the upper level of the node e.g. "config.users"
NUMBER is the integer value extracted from LASTFIELD e.g. "1"
TOTALNODE is the node name for the total e.g. "config.users.total"
TOTAL is the value of the total number of items before deleting e.g. "3"
NEWTOTAL is the modified total i.e. TOTAL-1
CHECKTOTAL checks if TOTAL is the actual total items in .xml

LASTFIELD=${1##*.}
ROOTNODE=${1%.*}
NUMBER=`echo $LASTFIELD | sed 's/^[a-zA-Z]*//g'`
TOTALNODE=`echo ${1%.*} | sed 's/\(.*\)/\1.total/'`
TOTAL=`config -g $TOTALNODE | sed 's/.* //'`
NEWTOTAL=$[$TOTAL -1]

Make backup copy of config file
cp /etc/config/config.xml /etc/config/config.bak
echo "backup of /etc/config/config.xml saved in /etc/config/config.bak"

if [-z $NUMBER] # test whether a singular node is being \
#deleted e.g. config.sdt.hosts
then

 echo "deleting $1"

Chapter 2: Advanced Configuration

34

 config -d "$1"

 echo Done
 exit 0

elif [$NUMBER = $TOTAL] # Test if only one item exists
then
 echo "only one item exists"
 # Deleting node
 echo "Deleting $1"
 config -d "$1"

 # Modifying item total.
 config -s "$TOTALNODE=0"

 echo Done
 exit 0

elif [$NUMBER -lt $TOTAL] # more than one item exists
then

 # Modify the users list so user numbers are sequential
 # by shifting the users into the gap one at a time...

 echo "Deleting $1"

 LASTFIELDTEXT=`echo $LASTFIELD | sed 's/[0-9]//g'`
 CHECKTOTAL=`config -g $ROOTNODE.$LASTFIELDTEXT$TOTAL`

 if [-z "$CHECKTOTAL"]
 then
 echo "WARNING: "$TOTALNODE" greater than number of items"
 fi

 COUNTER=1
 while [$COUNTER != $((TOTAL-NUMBER+1))]
 do

 config -g $ROOTNODE.$LASTFIELDTEXT$((NUMBER+COUNTER)) \
 | while read LINE
 do
 config -s \
 "`echo "$LINE" | sed -e "s/$LASTFIELDTEXT$((NUMBER+ \
 COUNTER))/$LASTFIELDTEXT$((NUMBER+COUNTER-1))/" \
 -e 's / /=/'`"

 done

 let COUNTER++
 done

 # deleting last user
 config -d $ROOTNODE.$LASTFIELDTEXT$TOTAL

 CLI and Scripting Reference

 # Modifying item total.
 config -s "$TOTALNODE=$NEWTOTAL"

 echo Done
 exit 0
else
 echo "error: item being deleted has an index greater than total items. Increase the total count
variable."
 exit 0
fi

2.1.6 Power cycle any device upon a ping request failure
The ping-detect script is designed to run specified commands when a monitored host stops responding to
ping requests.

The first parameter taken by the ping-detect script is the hostname / IP address of the device to ping. Any
other parameters are then regarded as a command to run whenever the ping to the host fails. ping-detect
can run any number of commands.

Below is an example using ping-detect to power cycle an RPC (PDU) outlet whenever a specific host fails
to respond to a ping request. The ping-detect is run from /etc/config/rc.local to make sure that the
monitoring starts whenever the system boots.

So if we assume we have a serially controlled RPC connected to port01 on a console server and have a
router powered by outlet 3 on the RPC (and the router has an internal IP address of 192.168.22.2). The
following instructions will show you how to continuously ping the router and when the router fails to
respond to a series of pings, the console server will send a command to RPC outlet 3 to power cycle the
router, and write the current date/time to a file:

- Copy the ping-detect script to /etc/config/scripts / on the console server

- Open /etc/config/rc.local using vi

- Add the following line to rc.local:

/etc/config/scripts/ping-detect 192.168.22.2 /bin/bash -c "pmpower -l port01 -o 3 cycle && date" >
/tmp/output.log &

The above command will cause the ping-detect script to continuously ping the host at 192.168.22.2 which
is the router. If the router crashes it will no longer respond to ping requests. If this happens, the two
commands pmpower and date will run. The output from these commands is sent to the file /tmp/output.log
so that we have some kind of record. The ping-detect is also run in the background using the "&".

Remember the rc.local script is only run by default when the system boots. You can manually run the
rc.local script or the ping-detect script if desired.

The ping-detect script
The above is just one example of using the ping-detect script. The idea of the script is to run any number
of commands when a specific host stops responding to ping requests. Here are details of the ping-detect
script itself:

#!/bin/sh
Usage: ping-detect HOST [COMMANDS...]
This script takes 2 types of arguments: hostname/IPaddress to ping, and the commands to
run if the ping fails 5 times in a row. This script can only take one host/IPaddress per
instance. Multiple independent commands can be sent to the script. The commands will be
run one after the other.

Chapter 2: Advanced Configuration

36

PINGREP is the entire reply from the ping command
LOSS is the percentage loss from the ping command
$1 must be the hostname/IPaddress of device to ping
$2... must be the commands to run when the pings fail.
COUNTER=0
TARGET="$1"
shift
loop indefinitely:
while true
do
 # ping the device 10 times
 PINGREP=`ping -c 10 -i 1 "$TARGET" `
 #get the packet loss percentage
 LOSS=`echo "$PINGREP" | grep "%" | sed -e 's/.* \([0-9]*\)% .*/\1/'`
 if ["$LOSS" -eq "100"]
 then
 COUNTER=`expr $COUNTER + 1`
 else
 COUNTER=0
 sleep 30s
 fi
 if ["$COUNTER" -eq 5]
 then
 COUNTER=0
 "$@"
 sleep 2s
 fi
done

2.1.7 Running custom scripts when a configurator is invoked

A configurator is responsible for reading the values in /etc/config/config.xml and making the appropriate
changes live. Some changes made by the configurators are part of the Linux configuration itself such as
user passwords or ipconfig.

Currently there are nineteen configurators each one responsible for a specific group of config e.g. the
"users" configurator makes the user configurations in the config.xml file live. To see all the available
configurators type the following from a command line prompt:

config

When a change is made using the Management Console web GUI the appropriate configurator is
automatically run. This can be problematic as if another user/administrator makes a change using the
Management Console the configurator could possibly overwrite any custom CLI/linux configurations you
may have set.

The solution is to create a custom script that runs after each configurator has run. So after each
configurator runs it will check whether that appropriate custom script exists. You can then add any
commands to the custom script and they will be invoked after the configurator runs.

The custom scripts must be in the correct location:

/etc/config/scripts/config-post-

To create an alerts custom script:

cd /etc/config/scripts
touch config-post-alerts
vi config-post-alerts

 CLI and Scripting Reference

This script could be used to recover a specific backup config or overwrite a config or make copies of
config files etc.

2.1.8 Backing-up the configuration and restoring using a local USB stick
The /etc/scripts/backup-usb script has been written to save and load custom configuration using a USB
flash disk. Before saving configuration locally, you must prepare the USB storage device for use. To do
this, disconnect all USB storage devices except for the storage device you wish to use.

Usage: /etc/scripts/backup-usb COMMAND [FILE]

COMMAND:

check-magic -- check volume label
set-magic -- set volume label
save [FILE] -- save configuration to USB
delete [FILE] -- delete a configuration tarbal from USB
list -- list available config backups on USB
load [FILE] -- load a specific config from USB
load-default -- load the default configuration
set-default [FILE] -- set which file becomes the default

The first thing to do is to check if the USB disk has a label:

 # /etc/scripts/backup-usb check-magic

If this command returns "Magic volume not found", then run the following command:

/etc/scripts/backup-usb set-magic

To save the configuration:

/etc/scripts/backup-usb save config-20May

To check if the backup was saved correctly:

/etc/scripts/backup-usb list

If this command does not display "* config-20May" then there was an error saving the configuration.

The set-default command takes an input file as an argument and renames it to "default.opg". This default
configuration remains stored on the USB disk. The next time you want to load the default config, it will be
sourced from the new default.opg file. To set a config file as the default:

/etc/scripts/backup-usb set-default config-20May

To load this default:

 # /etc/scripts/backup-usb load-default

To load any other config file:

/etc/scripts/backup-usb load {filename}

The /etc/scripts/backup-usb script can be executed directly with various COMMANDS or called from other
custom scripts you may create. However it is recommended that you do not customize the
/etc/scripts/backup-usb script itself at all.

2.1.9 Backing-up the configuration off-box
If you do not have a USB on your console server you can back up the configuration to an off-box file.
Before backing up you need to arrange a way to transfer the backup off-box. This could be via an NFS

Chapter 2: Advanced Configuration

38

share, a Samba (Windows) share to USB storage or copied off-box via the network. If backing up directly
to off-box storage, make sure it is mounted.

/tmp is not a good location for the backup except as a temporary location before transferring it off-box. The
/tmp directory will not survive a reboot. The /etc/config directory is not a good place either, as it will not
survive a restore.

Backup and restore should be done by the root user to ensure correct file permissions are set. The config
command is used to create a backup tarball:

 config -e <Output File>

The tarball will be saved to the indicated location. It will contain the contents of the /etc/config / directory in
an uncompressed and unencrypted form.

Example nfs storage:

mount -t nfs 192.168.0.2:/backups /mnt # config -e /mnt/cm7116.config

umount/mnt/

Example transfer off-box via scp:

config -e /tmp/cm7116.config
scp /tmp/cm7116.config username@192.168.0.2:/backups

The config command is also used to restore a backup:

 config -i <Input File>

This will extract the contents of the previously created backup to /tmp, and then synchronize the
/etc/config directory with the copy in /tmp.

One problem that can crop up here is that there is not enough room in /tmp to extract files to. The
following command will temporarily increase the size of /tmp:

 mount -t tmpfs -o remount,size=2048k tmpfs /var

If restoring to either a new unit or one that has been factory defaulted, it is important to make sure that the
process generating SSH keys is either stopped or completed before restoring configuration. If this is not
done, then a mix of old and new keys may be put in place.

As SSH uses these keys to avoid man-in-the-middle attacks, logging in may be disrupted.

2.2 Advanced Portmanager

Opengear’s portmanger program manages the console server serial ports. It routes network connection to
serial ports, checks permissions, and monitors and logs all the data flowing to/from the ports.

2.2.1 Portmanager commands

pmshell
The pmshell command acts similar to the standard tip or cu commands, but all serial port access is
directed via the portmanager.

Example: To connect to port 8 via the portmanager:
pmshell -l port08

pmshell Commands:

Once connected, the pmshell command supports a subset of the '~' escape commands that tip/cu
support. For SSH you must prefix the escape with an additional ‘~’ command (i.e. use the ‘~~’
escape)

 CLI and Scripting Reference

Send Break: Typing the character sequence '~b' will generate a BREAK on the serial port (if
you're doing this over ssh, you'll need to type "~~b")

History: Typing the character sequence '~h' will generate a history on the serial port.

Quit pmshell: Typing the character sequence '~.' will exit from pmshell.

Set RTS to 1 run the command: pmshell --rts=1

Show all signals: # pmshell –signals

3DSR=1 DTR=1 CTS=1 RTS=1 DCD=0

Read a line of text from the serial port: # pmshell –getline

Note: V3.5.2 and later firmware has includes pmshell chooser escape command so you can now hit ~m
from connected serial port to drop back to pmshell

Note: For console servers running firmware V3.11.0 and above pmshell has a set of key sequences built
in to access things like the power menu, return to the serial port selection menu and so on. Extra
controls (key sequences) can be added to the built in set of key sequences and can be configured
per serial port. You can have all ports behave the same or selectively add control sequences to
ports. The controls can be different from port to port for the same function.

For example, you could configure pmshell such that when you are using serial port 2, pressing
Ctrl+p would take you straight to the power menu for that port.

The pmshell control commands are configured only via the command line.

There is a helper script which will configure a control command on a range of serial ports to
eliminate the cumbersome task of entering the configuration command for every port. You will still
need to use this script once per control function (see below) but there are only six of these.

pmshell control functions and their built in key sequences:

 ~b - Generate BREAK - send a break to the console

 ~h - View history - see the traffic logs for the port - must have port logging enabled

 ~p - Power menu - open the power menu for the port - port must be configured for an RPC

 ~c – Port Configuration menu – display configuration menu for currently connected port

 ~u – User sessions disconnect menu - open list of user sessions, select by number to disconnect

 ~m - Connect to port menu - go back to the serial port selection menu

 ~. - Exit pmshell - exit pmshell completely

 ~? - Show help message - shows the help message

Per Port Control Command Config Parameters:

 config.ports.portX.ctrlcode.break - Generate BREAK

 config.ports.portX.ctrlcode.portlog - View History

 config.ports.portX.ctrlcode.power - Power menu

 config.ports.portX.ctrlcode.chooser - Connect to port menu

 config.ports.portX.ctrlcode.quit - Exit pmshell

 config.ports.portX.ctrlcode.help - Show help message

Chapter 2: Advanced Configuration

40

The pmshell help message is NOT updated with the extra control command keys that may be
configured. As an example, to configure Ctrl+p to open the power menu when using serial port 3,
enter the following in the console server's command shell:

 config -s config.ports.port3.ctrlcode.power=16

 killall -HUP portmanager

The first command sets the power menu command to listen for Ctrl+p (where decimal 16 is the
character code sent when you press Ctrl+p in the serial port session - see the range of control
codes below). The second command (killall -HUP portmanager) tells portmanager to reload the
configuration so that the new control code will take affect - rebooting the device would also work.

There is a script to set serial control codes on a range of ports so that bulk port configuration can
be performed more easily. For example to set the power menu control code to CTRL-P (keycode
16) on ports 4 to 10 inclusive, enter the following at the command line:

 /etc/scripts/set-serial-control-codes 4 10 power 16

This sets the power menu control key to Ctrl+p (see the range of control codes below). NOTE: If
you've not configured anything on a particular serial port in the included range, configuration for
that port will be skipped.

Control Codes (Ctrl+a=1 ... Ctrl+z=26):

Ctrl+a = 1

Ctrl+b = 2

Ctrl+c = 3

Ctrl+d = 4

Ctrl+e = 5

Ctrl+f = 6

Ctrl+g = 7

Ctrl+h = 8

Ctrl+i = 9

Ctrl+j = 10

Ctrl+k = 11

Ctrl+l = 12

Ctrl+m = 13

Ctrl+n = 14

Ctrl+o = 15

Ctrl+p = 16

Ctrl+q = 17

Ctrl+r = 18

Ctrl+s = 19

Ctrl+t = 20

Ctrl+u = 21

Ctrl+v = 22

Ctrl+w = 23

 CLI and Scripting Reference

Ctrl+x = 24

Ctrl+y = 25

Ctrl+z = 26

pmchat
The pmchat command acts similar to the standard chat command, but all serial port access is directed via
the portmanager.

Example: To run a chat script via the portmanager:

pmchat -v -f /etc/config/scripts/port08.chat < /dev/port08

For more information on using chat (and pmchat) you should consult the UNIX man pages:

http://techpubs.sgi.com/library/tpl/cgibin/getdoc.cgi?coll=linux&db=man&fname=/usr/share/catman/man8/c
hat.8.html

pmusers
The pmusers command is used to query the portmanager for active user sessions.

Example: To detect which users are currently active on which serial ports:

 # pmusers

This command will output nothing if there are no active users currently connected to any ports, otherwise it
will respond with a sorted list of usernames per active port:

 Port 1:
 user1
 user2
 Port 2:
 user1
 Port 8:
 user2

The above output indicates that a user named “user1” is actively connected to ports 1 and 2, while “user2”
is connected to both ports 1 and 8

Note: With V3.11 firmware and later the pmusers command is extended with the --disconnect option,
which allows an admin user or root to disconnect console server sessions from the command line. The
following connection types can be disconnected:

telnet
SSH
Raw TCP
Unauth'ed Telnet

You cannot disconnect an RFC2217 session.

If the --disconnect option is specified, the pmusers command goes into disconnect mode where you can
specify the users with -u, the ports with -l (by label) or -n (by name).

By default the command will prompt the user before actually disconnecting the matching sessions. This
can be overriden with the --no-prompt argument.

Example: pmuser sessions:

 # pmusers --disconnect

Chapter 2: Advanced Configuration

42

 Disconnect all users from all ports? (y/n)
 y
 5 sessions were disconnected

 # pmusers --disconnect -u robertw
 Disconnect user robertw from all ports? (y/n)
 y
 1 session was disconnected

 # pmusers --disconnect -u robertw -n 5
 Disconnect user robertw from port 5 (BranchRouter01)? (y/n)
 y
 No sessions were disconnected

 # pmusers --disconnect -n 5
 Disconnect all users from port 5 (BranchRouter01)? (y/n)
 y
 2 sessions were disconnected

 # pmusers --disconnect -u robertw -u pchunt -n 4 -n 6
 Disconnect users robertw, pchunt from ports 4, 6? (y/n)
 y
 10 sessions were disconnected

 # pmusers --disconnect -u tester --no-prompt
 No sessions were disconnected

portmanager daemon
There is normally no need to stop and restart the daemon. To restart the daemon normally, just run the
command:

portmanager

Supported command line options are:

Force portmanager to run in the foreground: --nodaemon

Set the level of debug logging: --loglevel={debug,info,warn,error,alert}

Change which configuration file it uses: -c /etc/config/portmanager.conf

Signals
Sending a SIGHUP signal to the portmanager will cause it to re-read its configuration file

2.2.2 External Scripts and Alerts
The portmanager has the ability to execute external scripts on certain events.

When a port is opened by the portmanager:

- When the portmanager opens a port, it attempts to execute /etc/config/scripts/portXX.init (where XX is
the number of the port, e.g. 08). The script is run with STDIN and STDOUT both connected to the
serial port.

- If the script cannot be executed, then portmanager will execute /etc/config/scripts/portXX.chat via the
chat command on the serial port.

 CLI and Scripting Reference

When an alert occurs on a port:

- When an alert occurs on a port, the portmanager will attempt to execute
/etc/config/scripts/portXX.alert (where XX is the port number, e.g. 08)

- The script is run with STDIN containing the data which triggered the alert, and STDOUT redirected to
/dev/null, NOT to the serial port. If you wish to communicate with the port, use pmshell or pmchat from
within the script.

- If the script cannot be executed, then the alert will be mailed to the address configured in the system
administration section.

When a user connects to any port:

- If a file called /etc/config/pmshell-start.sh exists it is run when a user connects to a port. It is provided
2 arguments, the "Port number" and the "Username". Here is a simple example:

</etc/config/pmshell-start.sh >
#!/bin/sh
PORT="$1"
USER="$2"
echo "Welcome to port $PORT $USER"
< /etc/config/pmshell-start.sh>

- The return value from the script controls whether the user is accepted or not, if 0 is returned (or
nothing is done on exit as in the above script) the user is permitted, otherwise the user is denied
access.

- Here is a more complex script which reads from configuration to display the port label if available and
denies access to the root user:

</etc/config/pmshell-start.sh>
#!/bin/sh
PORT="$1"
USER="$2"
LABEL=$(config -g config.ports.port$PORT.label | cut -f2- -d' ')
if ["$USER" == "root"]; then

echo "Permission denied for Super User"
exit 1

fi
if [-z "$LABEL"]; then
echo "Welcome $USER, you are connected to Port $PORT"
else
echo "Welcome $USER, you are connected to Port $PORT ($LABEL)"
fi
</etc/config/pmshell-start.sh>

2.3 Raw Access to Serial Ports

2.3.1 Access to serial ports
You can use tip and stty to completely bypass the portmanager and have raw access to the serial ports.

When you run tip on a portmanager controlled port, portmanager closes that port, and stops monitoring it
until tip releases control of it.

With stty, the changes made to the port only "stick" until that port is closed and opened again. So it is
doubtful that people will want to use stty for more than initial debugging of the serial connection.

Chapter 2: Advanced Configuration

44

If you want to use stty to configure the port, you can put stty commands in /etc/config/scripts/portXX.init
which gets run whenever portmanager opens the port.

Otherwise, any setup you do with stty will get lost when the portmanager opens the port. (the reason that
portmanager sets things back to its config rather than using whatever is on the port, is so the port is in a
known good state, and will work, no matter what things are done to the serial port outside of
portmanager).

2.3.2 Accessing the console/modem port
The console dial-in is handled by mgetty, with automatic PPP login extensions. mgetty is a smart getty
replacement, designed to be used with Hayes compatible data and data/fax modems. mgetty knows about
modem initialization, manual modem answering (so your modem doesn’t answer if the machine isn’t
ready), UUCP locking (so you can use the same device for dial-in and dial-out). mgetty provides very
extensive logging facilities. All standard mgetty options are supported.

Modem initialization strings:

- To override the standard modem initialization string either use the Management Console or the
command line config tool.

Enabling Boot Messages on the Console:

- If you are not using a modem on the DB9 console port and instead wish to connect to it directly via a
Null Modem cable you may want to enable verbose mode allowing you to see the standard linux start-
up messages. This can be achieved with the following commands:

/bin/config --set=config.console.debug=on # /bin/config --run=console # reboot

- If at some point in the future you chose to connect a modem for dial-in out-of-band access the
procedure can be reversed with the following commands.

/bin/config --del=config.console.debug # /bin/config --run=console # reboot

2.4 IP Filtering

The console server uses the iptables utility to provide a stateful firewall of LAN traffic. By default rules are
automatically inserted to allow access to enabled services, and serial port access via enabled protocols.
The commands which add these rules are contained in configuration files:

/etc/config/fw.rules
This is an executable shell script which is run whenever the LAN interface is brought up and whenever
modifications are made to the iptables configuration as a result of CGI actions or the config command line
tool.

The basic steps performed are as follows:

- Running iptables configuration is erased, per-interface and other standard system chains are installed

- Fall through Block rules (default deny) are installed

- Serial & Network: Services policies are installed in per-interface chains

- Custom Serial & Network: Firewall rules are inserted at the top of the rule sets, taking priority over
any other configuration

If you require further firewall customization, extra rules can be persisted by creating a file at
/etc/config/scripts/firewall-post containing iptables commands to amend the firewall policy.

 CLI and Scripting Reference

There’s good documentation about using the iptables command at the Linux netfilter website
http://netfilter.org/documentation/index.html.There are also many high-quality tutorials and HOWTOs
available via the netfilter website, in particular peruse the tutorials listed on the netfilter HOWTO page.

2.5 SNMP Status Reporting

All console servers contain an SNMP Service (snmpd) which can provide status information on demand.
snmpd is an SNMP agent which binds to a port and awaits requests from SNMP management software.
Upon receiving a request, it processes the request(s), collects the requested information and/or performs
the requested operation(s) and returns the information to the sender.

Note: Initially only advanced console server models were equipped with an SNMP Service. With V3.0
(and later) firmware this support was extended to all console servers. Also the MIBS were
extended (and renamed for compliance) with this firmware release.

All console servers can also be configured to send SNMP traps/messages to multiple remote SNMP
Network Managers on defined trigger events.

2.5.1 Retrieving status information using SNMP
Console servers can provide serial and device status information through SNMP. This includes

- Serial port status
- Active users
- Remote Power Control (RPC) and Power Distribution Unit (PDU) status
- Environmental Monitoring Device (EMD) status
- Signal alert status
- Environmental alert status and
- UPS alert status

The MIBs in your console server are located in /etc/snmp/mibs. You also can view the current MIBs online
at / and they include:

OG-STATUS-MIB This MIB contains serial and connected device status
information (for snmpstatusd & snmpalertd)

• OG-STATUSv2-MIB • This new MIB contains extended status and alert

OG-SMI-MIB Enterprise structure of management information

OGTRAP-MIB SMIv1 traps from old MIBS (as smilint will not let SMIv1
structures coexist with SMIv2)

OGTRAPv2-MIB Updated traps

2.5.2 Check firewall rules
Ø Select System: Services and ensure the SNMP daemon box has been checked for the interface

required. This will allow SNMP requests through the firewall for the specified interface.

2.5.3 Enable SNMP Service
The console server supports different versions of SNMP including SNMPv1, SNMPv2c and SNMPv3.

Chapter 2: Advanced Configuration

46

SNMP, although an industry standard, brings with it a variety of security concerns. For example, SNMPv1
and SNMPv2c offer no inherent privacy, while SNMPv3 is susceptible to man-in-the-middle attacks.
Recent IETF developments suggests tunnelling SNMP over widely accepted technologies such as SSH
(Secure Shell) or TLS (Transport Layer Security) rather than relying on a less mature security systems
such as SNMPv3's USM (User-based Security Model).

Additional information regarding SNMP security issues and SNMPv3 can be found at:
http://net-snmp.sourceforge.net/wiki/index.php/TUT:Security
 http://www.ietf.org/html.charters/snmpv3-charter.html.

Ø Select Alerts & Logging: SNMP

Ø The SNMP Service Details tab is shown by default. The SNMP Service Details tab controls
aspects of the SNMP Service including Security Level. It manages requests from external agents
for Opengear status information.

Ø Check the Enable the SNMP Service box to start the SNMP Service. The Service is disabled by
default.

Ø Select either UDP or TCP for the TCP/IP Protocol. UDP is the recommended protocol and is
selected by default. TCP should only be used in special cases such as when Port Forwarding
SNMP requests/responses to or from the Opengear device is required.

Ø Complete the Location and Contact fields. The Location field should describe the physical
location of the Opengear and will be used in response to requests for the SNMPv2-
MIB::sysLocation.0 of the device. The Contact field refers to the person responsible for the
Opengear such as the System Administrator and will be used in response to requests as follows:
SNMPv2-MIB::sysContact.0.

Ø Enter the Read-Only Community and Read-Write Community. This is required for SNMP v1 &
v2c only. The Read-Only Community field is used to specify the SNMPv1 or SNMPv2c community
that will be allowed read-only (GET and GETNEXT) access. This must be specified in order for
both versions to become enabled. The Read-Write Community field is used to specify the
SNMPv1 or SNMPv2c community that will be allowed read-write (GET, GETNEXT and SET)
access.

Ø Configure SNMP v3, if required. SNMP v3 provides secure SNMP operations through the use of
USM (User-based Security Model). It offers various levels of security including user-based
authentication and basic encryption.

o The Engine ID is used to localize the SNMPv3 user. It will be automatically generated from a
Network Interface (eth0) hardware address, if left blank, or must be entered as a hex value
e.g. 0x01020304.

 CLI and Scripting Reference

o Specify the Security Level:

noauth No authentication or encryption is required. This is the minimum
level of security.

auth Authentication will be required but encryption is not enforced. An
authentication protocol (SHA or MD5) and password will be required.

priv Enforces the use of encryption. This is the highest level of security and
requires an encryption protocol (DES or AES) and password in addition
to the authentication protocol and password.

o Complete the Read Only Username. Enter the read only security name. This field is
mandatory and must be completed when configuring the console server for SNMPv3.

o For a Security Level of auth, select the Auth. Protocol (SHA or MD5) and the Auth.
Password. A password of at least 8 characters is required.

o For a Security Level of priv, select the Privacy Protocol (DES or AES) and the Privacy
Password. AES is recommended as it provides stronger privacy but requires more intense
calculations. A password of at least 8 characters is required.

Ø Click Apply

Ø Setup serial ports and devices as per operational requirements such as UPS, RPC/PDU and EMD

Ø Copy the mibs from /etc/snmp/mibs on the Opengear product to a local directory using scp or
Winscp. For example:

Chapter 2: Advanced Configuration

48

scp root@im4004:/etc/snmp/mibs/*

Ø Using the snmpwalk and snmpget commands, the status information can be retrieved from any

console server. For example:

snmpwalk -Oa -v1 -M .:/usr/share/snmp/mibs -c public im4004 OG-STATUS-MIB::ogStatus

snmpget -Oa -v1 -M .:/usr/share/snmp/mibs -c public im4004 OG-STATUSMIB::
ogSerialPortStatusSpeed.2

noauth

snmpwalk -Oa –v3 –l noAuthNoPriv –u readonlyusername -M .:/usr/share/snmp/mibs im4004 OG-
STATUS-MIB::ogStatus

auth

 CLI and Scripting Reference

snmpwalk -Oa –v3 –l authNoPriv –u readonlyusername –a SHA –A “authpassword” -M
.:/usr/share/snmp/mibs im4004 OG-STATUS-MIB::ogStatus

priv

snmpwalk -Oa –v3 –l authNoPriv –u readonlyusername –a SHA –A “authpassword” –x DES –X
“privpassword” -M .:/usr/share/snmp/mibs im4004 OG-STATUS-MIB::ogStatus

-l Security Level
-u Security Name or Read Only Username
-a Authentication Protocol – SHA or MD5
-A Authentication Password
-x Privacy Protocol – DES or AES
-X Privacy Password

A mib browser may be used to explore the Opengear enterprise MIB structure. For example, the ogStatus
tree is shown below:

Chapter 2: Advanced Configuration

50

2.5.4 Adding multiple remote SNMP managers
You can add multiple SNMP servers for alert traps add the first and second SNMP servers using the
Management Console or the command line config tool. Further SNMP servers must be added manually
using config.

Log in to the console server’s command line shell as root or an admin user. Refer back to the
Management Console UI or user documentation for descriptions of each field.

To set the SNMP Manager Address field:
 config –set="config.system.snmp.address3=w.x.y.z"

.. replacing w.x.y.z with the IP address or DNS name.

To set the Manager Trap Port field
 config --set=”config.system.snmp.trapport3=162”
.. replacing 162 with the TCP/UDP port number

To set the SNMP Manager Protocol field:
 config --set="config.system.snmp.protocol3=UDP" or
 config --set="config.system.snmp.protocol3=TCP"

To set the SNMP Manager Version field:
 config --set="config.system.snmp.version3=3"

To set the SNMP Manager v1 & v2c community field:

 CLI and Scripting Reference

 config --set="config.system.snmp.community3=public"

To set the SNMP Manager v3 Engine ID field:
 config –set="config.system.snmp.engineid3=0x8000000001020304"

.. replacing 0x8000000001020304 with the hex Engine-ID

To set the SNMP Manager v3 Security Level field:
 config --set="config.system.snmp.seclevel3=noAuthNoPriv" or
 config --set="config.system.snmp.seclevel3=authNoPriv" or
 config --set="config.system.snmp.seclevel3=authPriv"

To set the SNMP Manager v3 Username field:
 config --set="config.system.snmp.username3=username"

To set the SNMP Manager v3 Auth. Protocol and password fields:
 config –set="config.system.snmp.authprotocol3=SHA" or

 config --set="config.system.snmp.authprotocol3=MD5"
 config --set="config.system.snmp.authpassword3=password 1"

To set the SNMP Manager v3 Privacy Protocol and password fields:
 config –set="config.system.snmp.privprotocol3=AES" or

 config –set="config.system.snmp.privprotocol3=DES"

 config --set="config.system.snmp.privpassword3=password 2"

Once the fields are set, apply the configuration with the following command:
config --run snmp

You can add a third or more SNMP servers by incrementing the "2" in the above commands, e.g.
config.system.snmp.protocol3, config.system.snmp.address3, etc
2.6 Secure Shell (SSH) Public Key Authentication

This section covers the generation of public and private keys in a Linux and Windows environment and
configuring SSH for public key authentication. The steps to use in a Clustering environment are:

• Generate a new public and private key pair
• Upload the keys to the Master and to each Slave console server
• Fingerprint each connection to validate

2.6.1 SSH Overview
Popular TCP/IP applications such as telnet, rlogin, ftp, and others transmit their passwords unencrypted.
Doing this across pubic networks like the Internet can have catastrophic consequences. It leaves the door
open for eavesdropping, connection hijacking, and other network-level attacks.

Secure Shell (SSH) is a program to log into another computer over a network, to execute commands in a
remote machine, and to move files from one machine to another. It provides strong authentication and
secure communications over insecure channels.

OpenSSH is an open source SSH application that encrypts all traffic (including passwords) to effectively
eliminate these risks. Additionally, OpenSSH provides a myriad of secure tunneling capabilities, as well as
a variety of authentication methods.

The only changes in the Opengear SSH implementation are:

- PAM support

Chapter 2: Advanced Configuration

52

- EGD[1]/PRNGD[2] support and replacements for OpenBSD library functions that are absent from
other versions of UNIX

- The config files are now in /etc/config. e.g.
§ /etc/config/sshd_config instead of /etc/sshd_config
§ /etc/config/ssh_config instead of /etc/ssh_config
§ /etc/config/users/<username>/.ssh / instead of /home/<username>/.ssh/

2.6.2 Generating Public Keys (Linux)
To generate new SSH key pairs use the Linux ssh-keygen command. This will produce an RSA or DSA
public/private key pair and you will be prompted for a path to store the two key files e.g. id_dsa.pub (the
public key) and id_dsa (the private key). For example:

$ ssh-keygen -t [rsa|dsa]
Generating public/private [rsa|dsa] key pair.
Enter file in which to save the key (/home/user/.ssh/id_[rsa|dsa]):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/user/.ssh/id_[rsa|dsa].
Your public key has been saved in /home/user/.ssh/id_[rsa|dsa].pub.
The key fingerprint is:

 28:aa:29:38:ba:40:f4:11:5e:3f:d4:fa:e5:36:14:d6 user@server
$

It is advisable to create a new directory to store your generated keys. It is also possible to name the files
after the device they will be used for. For example:

 $ mkdir keys
 $ ssh-keygen -t rsa
 Generating public/private rsa key pair.

Enter file in which to save the key (/home/user/.ssh/id_rsa): /home/user/keys/control_room
 Enter passphrase (empty for no passphrase):
 Enter same passphrase again:
 Your identification has been saved in /home/user/keys/control_room
 Your public key has been saved in /home/user/keys/control_room.pub.
 The key fingerprint is:
 28:aa:29:38:ba:40:f4:11:5e:3f:d4:fa:e5:36:14:d6 user@server
 $

You must ensure there is no password associated with the keys. If there is a password, then the
Opengear devices will have no way to supply it as runtime.

Full documentation for the ssh-keygen command can be found at http://www.openbsd.org/cgi-
bin/man.cgi?query=ssh-keygen

2.6.3 Installing the SSH Public/Private Keys (Clustering)
For Opengear console servers the keys can be simply uploaded through the web interface, on the
System: Administration page. This enables you to upload stored RSA or DSA Public Key pairs to the
Master and apply the Authorized key to the slave. Once complete you then proceed to Fingerprinting as
described below.

 CLI and Scripting Reference

2.6.4 Installing SSH Public Key Authentication (Linux)
Alternately the public key can be installed on the unit remotely from the linux host with
the scp utility as follows.

Assuming the user on the Management Console is called "fred"; the IP address of the console server is
192.168.0.1 (default); and the public key is on the linux/unix computer in ~/.ssh/id_dsa.pub. Execute the
following command on the linux/unix computer:

scp ~/.ssh/id_dsa.pub \
root@192.168.0.1:/etc/config/users/fred/.ssh/authorized_keys

The authorized_keys file on the console server needs to be owned by "fred", so login to the Management
Console as root and type:

chown fred /etc/config/users/fred/.ssh/authorized_keys

If the Opengear device selected to be the server will only have one client device, then the authorized_keys
file is simply a copy of the public key for that device. If one or more devices will be clients of the server,
then the authorized_keys file will contain a copy of all of the public keys. RSA and DSA keys may be freely

Master

Slave Slave

-----BEGIN RSA
PRIVATE KEY-----
MIIEogIBAAKCAQEA
yIPGsNf5+a0LnPUMc
nujXXPGiQGyD3b79
KZg3UZ4MjZI525sCy
opv4TJTvTK6e8QIYt
GYTByUdI

id_rsa

id_rsa.pub

ssh-rsa AAAAB3NzaC1yc2Efg4+tGHlAAA== name@client1

authorized_key

ssh-rsa
AAAAB3NzaC1yc2Efg4+t
GHlAAA==name@client1

ssh-rsa
AAAAB3NzaC1yc2Efg4+t
GHlAAA==name@client1

authorized_key

Chapter 2: Advanced Configuration

54

mixed in the authorized_keys file. For example, assume we already have one server, called
bridge_server, and two sets of keys, for the control_room and the plant_entrance:
$ ls /home/user/keys control_room control_room.pub plant_entrance plant_entrance.pub $ cat
/home/user/keys/control_room.pub /home/user/keys/plant_entrance.pub >
/home/user/keys/authorized_keys_bridge_server

More documentation on OpenSSH can be found at:

http://openssh.org/portable.html
http://www.openbsd.org/cgi-bin/man.cgi?query=ssh&sektion=1
http://www openbsd.org/cgi-bin/man.cgi?query=sshd.

2.6.5 Generating public/private keys for SSH (Windows)
This section describes how to generate and configure SSH keys using Windows.

First create a new user from the Opengear Management (the following example uses a user called
"testuser") making sure it is a member of the "users" group.

If you do not already have a public/private key pair you can generate them now using ssh-keygen,
PuTTYgen or a similar tool:

PuTTYgen: http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

OpenSSH: http://www.openssh.org/

OpenSSH (Windows): http://sshwindows.sourceforge.net/download/

For example using PuTTYgen, make sure you have a recent version of the puttygen.exe (available from
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html) Make sure you have a recent version
of WinSCP (available from http://winscp.net/eng/download.php)

Master
Slave

-----BEGIN RSA
PRIVATE KEY-----
MIIEogIBAAKCAQEA
yIPGsNf5+a0LnPUMc
nujXXPGiQGyD3b79
KZg3UZ4MjZI525sCy
opv4TJTvTK6e8QIYt
GYTByUdI

id_rsa

id_rsa.pub

ssh-rsa
AAAAB3NzaC1yc2Efg4+tG
HlAAA== name@client1

authorized_keys
ssh-rsa AAAAB3NzaC1yc2Efg4+tGHl
AAA== name@client1
ssh-dss AAAAB3NzaZr+OV01C8gdgz
XDg== name@client2

Master

-----BEGIN DSA
PRIVATE KEY-----
MIIBugIBAAKBgQCR
kixjJ0SKuiREXTM
x0PFp9HqBvEg7Ww9
oynY4QNiXj1YU7T
87ITLQiAhn3yp7ZWy

7Z5C3sLF8o46Go

id_dsa

id_dsa.pub

ssh-dss
AAAAB3NzaZr+OV01C8gdgz
XDg== name@client2

 CLI and Scripting Reference

To generate a SSH key using PuTTY http://sourceforge.net/docs/F02/#clients:

- Execute the PUTTYGEN.EXE program

- Select the desired key type SSH2 DSA (you may use RSA or DSA) within the Parameters section

- It is important that you leave the passphrase field blank

- Click on the Generate button

- Follow the instruction to move the mouse over the blank area of the program in order to create
random data used by PUTTYGEN to generate secure keys. Key generation will occur once
PUTTYGEN has collected sufficient random data

- Create a new file " authorized_keys " (with notepad) and copy your public key data from the "Public

key for pasting into OpenSSH authorized_keys file" section of the PuTTY Key Generator, and paste
the key data to the "authorized_keys" file. Make sure there is only one line of text in this file

- Use WinSCP to copy this "authorized_keys" file into the user’s home directory: eg.
/etc/config/users/testuser/.ssh/authorized_keys of the Opengear gateway which will be the SSH
server. You will need to make sure this file is in the correct format with the correct permissions with
the following commands:

dos2unix \
/etc/config/users/testuser/.ssh/authorized_keys && chown testuser \
/etc/config/users/testuser/.ssh/authorized_keys

- Using WinSCP copy the attached sshd_config over /etc/config/sshd_config on the server (Makes sure
public key authentication is enabled)

- Test the Public Key by logging in as "testuser" Test the Public Key by logging in as "testuser" to the
client Opengear device and typing (you should not need to enter anything): # ssh -o
StrictHostKeyChecking=no <server-ip>

Chapter 2: Advanced Configuration

56

To automate connection of the SSH tunnel from the client on every power-up you need to make the clients
/etc/config/rc.local look like the following:

#!/bin/sh
ssh -L9001:127.0.0.1:4001 -N -o StrictHostKeyChecking=no testuser@<server-ip> &

This will run the tunnel redirecting local port 9001 to the server port 4001.

2.6.6 Fingerprinting
Fingerprints are used to ensure you are establishing an SSH session to who you think you are. On the first
connection to a remote server you will receive a fingerprint which you can use on future connections.

This fingerprint is related to the host key of the remote server. Fingerprints are stored in
~/.ssh/known_hosts.

To receive the fingerprint from the remote server, log in to the client as the required user (usually root) and
establish a connection to the remote host:

ssh remhost
The authenticity of host 'remhost (192.168.0.1)' can't be established.
RSA key fingerprint is 8d:11:e0:7e:8a:6f:ad:f1:94:0f:93:fc:7c:e6:ef:56.
Are you sure you want to continue connecting (yes/no)?

At this stage, answer yes to accept the key. You should get the following message:

Warning: Permanently added 'remhost,192.168.0.1' (RSA) to the list of
known hosts.

You may be prompted for a password, but there is no need to log in - you have received the fingerprint
and can Ctrl-C to cancel the connection.If the host key changes you will receive the following warning, and
not be allowed to connect to the remote host:

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@ IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY! @
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

Someone could be eavesdropping on you right now (man-in-the-middle attack)!

It is also possible that the RSA host key has just been changed.

The fingerprint for the RSA key sent by the remote host is

ab:7e:33:bd:85:50:5a:43:0b:e0:bd:43:3f:1c:a5:f8.

Please contact your system administrator.

Add correct host key in /.ssh/known_hosts to get rid of this message.

Offending key in /.ssh/known_hosts:1

RSA host key for remhost has changed and you have requested strict checking.

Host key verification failed.

If the host key has been legitimately changed, it can be removed from the ~/.ssh/known_hosts file and the
new fingerprint added. If it has not changed, this indicates a serious problem that should be investigated
immediately.

 CLI and Scripting Reference

2.6.7 SSH tunneled serial bridging
You have the option to apply SSH tunneling when two Black Box console servers are configured for serial
bridging.

The Server console server is setup in Console Server mode with either RAW or RFC2217 enabled and
the Client console server is set up in Serial Bridging Mode with the Server Address, and Server TCP Port
(4000 + port for RAW or 5000 + port # for RFC2217) specified:

Ø Select SSH Tunnel when configuring the Serial Bridging Setting

Next you will need to set up SSH keys for each end of the tunnel and upload these keys to the Server and
Client console servers.

Client Keys:
The first step in setting up ssh tunnels is to generate keys. Ideally, you will use a separate, secure,
machine to generate and store all keys to be used on the console servers. However, if this is not ideal to
your situation, keys may be generated on the console servers themselves.

It is possible to generate only one set of keys, and reuse them for every SSH session. While this is not
recommended, each organization will need to balance the security of separate keys against the additional
administration they bring.

Generated keys may be one of two types - RSA or DSA (and it is beyond the scope of this document to
recommend one over the other). RSA keys will go into the files id_rsa and id_rsa.pub. DSA keys will be
stored in the files id_dsa and id_dsa.pub.

For simplicity going forward the term private key will be used to refer to either id_rsa or id_dsa and public
key to refer to either id_rsa.pub or id_dsa.pub.

Chapter 2: Advanced Configuration

58

To generate the keys using OpenBSD's OpenSSH suite, we use the ssh-keygen program:

$ ssh-keygen -t [rsa|dsa]
Generating public/private [rsa|dsa] key pair.
Enter file in which to save the key (/home/user/.ssh/id_[rsa|dsa]):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/user/.ssh/id_[rsa|dsa].
Your public key has been saved in /home/user/.ssh/id_[rsa|dsa].pub.
The key fingerprint is:

 28:aa:29:38:ba:40:f4:11:5e:3f:d4:fa:e5:36:14:d6 user@server
$

It is advisable to create a new directory to store your generated keys. It is also possible to name the files
after the device they will be used for. For example:

 $ mkdir keys
 $ ssh-keygen -t rsa
 Generating public/private rsa key pair.

Enter file in which to save the key (/home/user/.ssh/id_rsa): /home/user/keys/control_room
 Enter passphrase (empty for no passphrase):
 Enter same passphrase again:
 Your identification has been saved in /home/user/keys/control_room
 Your public key has been saved in /home/user/keys/control_room.pub.
 The key fingerprint is:
 28:aa:29:38:ba:40:f4:11:5e:3f:d4:fa:e5:36:14:d6 user@server
 $

You should ensure there is no password associated with the keys. If there is a password, then the console
servers will have no way to supply it as runtime.

Authorized Keys:
If the console server selected to be the server will only have one client device, then the authorized_keys
file is simply a copy of the public key for that device. If one or more devices will be clients of the server,
then the authorized_keys file will contain a copy of all of the public keys. RSA and DSA keys may be freely
mixed in the authorized_keys file.

 CLI and Scripting Reference

For example, assume we already have one server, called bridge_server, and two sets of keys, for the
control_room and the plant_entrance:

 $ ls /home/user/keys

 control_room control_room.pub plant_entrance plant_entrance.pub

 $ cat /home/user/keys/control_room.pub

 /home/user/keys/plant_entrance.pub >

 /home/user/keys/authorized_keys_bridge_server

Uploading Keys:
The keys for the server can be uploaded through the web interface, on the System: Administration page
as detailed earlier. If only one client will be connecting, then simply upload the appropriate public key as
the authorized keys file. Otherwise, upload the authorized keys file constructed in the previous step.

Each client will then need its own set of keys uploaded through the same page. Take care to ensure that
the correct type of keys (DSA or RSA) goes in the correct spots, and that the public and private keys are
in the correct spot.

2.6.8 SDT Connector Public Key Authentication
SDT Connector can authenticate against a console server using your SSH key pair rather than requiring
your to enter your password (i.e. public key authentication).

Ø To use public key authentication with SDT Connector, first you must first create an RSA or DSA key
pair (using ssh-keygen, PuTTYgen or a similar tool) and add the public part of your SSH key pair to
the console server – as described in the earlier section.

Ø Next, add the private part of your SSH key pair (this file is typically named id_rsa or id_dsa) to SDT
Connector client. Click Edit: Preferences: Private Keys: Add, locate the private key file and click
OK. You do not have to add the public part of your SSH key pair, it is calculated using the private key.

SDT Connector will now use public key authentication when SSH connecting through the console server.
You may have to restart SDT Connector to shut down any existing tunnels that were established using
password authentication.

If you have a host behind the console server that you connect to by clicking the SSH button in SDT
Connector, you can also configure it for public key authentication. Essentially what you are using is SSH
over SSH, and the two SSH connections are entirely separate, and the host configuration is entirely
independent of SDT Connector and the console server. You must configure the SSH client that SDT
Connector launches (e.g. Putty, OpenSSH) and the host's SSH server for public key authentication.

2.7 Secure Sockets Layer (SSL) Support

Secure Sockets Layer (SSL) is a protocol developed by Netscape for transmitting private documents via the
Internet. SSL works by using a private key to encrypt data that's transferred over the SSL connection.

The console server includes OpenSSL. The OpenSSL Project is a collaborative effort to develop a robust,
commercial-grade, full-featured, and Open Source toolkit implementing the Secure Sockets Layer (SSL
v2/v3) and Transport Layer Security (TLS v1) protocols as well as a full-strength general purpose
cryptography library. The project is managed by a worldwide community of volunteers that use the Internet
to communicate, plan, and develop the OpenSSL toolkit and its related documentation.

The OpenSSL toolkit is licensed under an Apache-style license, which basically means that you are free to
get and use it for commercial and non-commercial purposes subject to some simple license conditions. In
the console server OpenSSL is used primarily in conjunction with ‘http’ in order to have secure browser
access to the GUI management console across insecure networks.

Chapter 2: Advanced Configuration

60

More documentation on OpenSSL is available from:

http://www.openssl.org/docs/apps/openssl.html

http://www.openssl.org/docs/HOWTO/certificates.txt

2.8 HTTPS

The Management Console UI is served using HTTPS by the built in cherokee webserver.

If your default network address is changed or the unit is to be accessed via a known Domain Name you
can use the following steps to replace the default SSL Certificate and Private Key with ones tailored for
your new address.

2.8.1 Generating an encryption key
To create a 1024 bit RSA key with a password issue the following command on the command line of a
linux host with the openssl utility installed:

openssl genrsa -des3 -out ssl_key.pem 1024

2.8.2 Generating a self-signed certificate with OpenSSL
This example shows how to use OpenSSL to create a self-signed certificate. OpenSSL is available for
most Linux distributions via the default package management mechanism. (Windows users can check
http://www.openssl.org/related/binaries.html)

To create a 1024 bit RSA key and a self-signed certificate issue the following openssl command from the
host you have openssl installed on:

openssl req -x509 -nodes -days 1000 \

 -newkey rsa:1024 -keyout ssl_key.pem -out ssl_cert.pem

You will be prompted to enter a lot of information. Most of it doesn't matter, but the "Common Name"
should be the domain name of your computer (e.g. test.opengear.com). When you have entered
everything, the certificate will be created in a file called ssl_cert.pem.

2.8.3 Installing the key and certificate
The recommended method for copying files securely to the console server unit is with an SCP (Secure
Copying Protocol) client. The scp utility is distributed with OpenSSH for most Unix distributions while
Windows users can use something like the PSCP command line utility available with PuTTY.

The files created in the steps above can be installed remotely with the scp utility as follows:

scp ssl_key.pem root@<address of unit>:/etc/config/
scp ssl_cert.pem root@<address of unit>:/etc/config/

or using PSCP:

pscp -scp ssl_key.pem root@<address of unit>:/etc/config/
pscp -scp ssl_cert.pem root@<address of unit>:/etc/config/

PuTTY and the PSCP utility can be downloaded from:
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

More detailed documentation on the PSCP can be found:
http://the.earth.li/~sgtatham/putty/0.58/htmldoc/Chapter5.html#pscp

 CLI and Scripting Reference

2.8.4 Launching the HTTPS Server
Note that the easiest way to enable the HTTPS server is from the web Management Console. Simply click
the appropriate checkbox in Network: Services: HTTPS Server and the HTTPS server will be activated
(assuming the ssl_key.pem & ssl_cert.pem files exist in the /etc/config directory).
Alternatively inetd can be configured to launch the secure fnord server from the command line of the unit
as follows.

Edit the inetd configuration file. From the unit command line:

vi /etc/config/inetd.conf

Append a line:

443 stream tcp nowait root sslwrap -cert /etc/config/ssl_cert.pem -key /etc/config/ssl_key.pem -
exec /bin/httpd /home/httpd"

Save the file and signal inetd of the configuration change.

kill -HUP `cat /var/run/inetd.pid`

The HTTPS server should be accessible from a web client at a URL similar to this: https://<common name
of unit>

More detailed documentation about the openssl utility can be found at the website:
http://www.openssl.org/

2.9 Power Strip Control

The console server supports a growing list of remote power-control devices (RPCs) which can be
configured using the Management Console. These RPCs are controlled using the open source PowerMan
and Network UPS Tools and with Opengear’s pmpower utility.

2.9.1 The PowerMan tool
PowerMan provides power management in a data center or compute cluster environment. It performs
operations such as power on, power off, and power cycle via remote power controller (RPC) devices.

Synopsis
powerman [-option] [targets]
pm [-option] [targets]

Options
-1, --on Power ON targets.
-0, --off Power OFF targets.
-c, --cycle Power cycle targets.
-r, --reset Assert hardware reset for targets (if implemented by RPC).
-f, --flash Turn beacon ON for targets (if implemented by RPC).
-u, --unflash Turn beacon OFF for targets (if implemented by RPC).
-l, --list List available targets. If possible, output will be compressed into a host range (see TARGET
SPECIFICATION below).
-q, --query Query plug status of targets. If none specified, query all targets. Status is not cached;

each time this option is used, powerman queries the appropriate RPC's. Targets
connected to RPC's that could not be contacted (e.g. due to network failure) are reported
as status "unknown". If possible, output will be compressed into host ranges.

-n, --node Query node power status of targets (if implemented by RPC). If no targets specified,
query all targets. In this context, a node in the OFF state could be ON at the plug but
operating in standby power mode.

Chapter 2: Advanced Configuration

62

-b, --beacon Query beacon status (if implemented by RPC). If no targets are specified, query all
targets.

-t, --temp Query node temperature (if implemented by RPC). If no targets are specified, query all
targets. Temperature information is not interpreted by powerman and is reported as
received from the RPC on one line per target, prefixed by target name.

-h, --help Display option summary.
-L, --license Show powerman license information.
-d, --destination host[:port] Connect to a powerman daemon on non-default host and optionally port.
-V, --version Display the powerman version number and exit.
-D, --device Displays RPC status information. If targets are specified, only RPC's matching the target

list is displayed.
-T, --telemetry Causes RPC telemetry information to be displayed as commands are processed. Useful

for debugging device scripts.
-x, --exprange Expand host ranges in query responses.

For more details refer http://linux.die.net/man/1/powerman
Also refer powermand (http://linux.die.net/man/1/powermand) documentation and powerman.conf
(http://linux.die.net/man/5/powerman.conf)

Target Specification
powerman target hostnames may be specified as comma separated or space separated hostnames or
host ranges. Host ranges are of the general form: prefix[n-m,l-k,...], where n < m and l < k, etc., This form
should not be confused with regular expression character classes (also denoted by ''[]''). For example,
foo[19] does not represent foo1 or foo9, but rather represents a degenerate range: foo19.

This range syntax is meant only as a convenience on clusters with a prefix NN naming convention and
specification of ranges should not be considered necessary -- the list foo1,foo9 could be specified as
such, or by the range foo[1,9].

Some examples of powerman targets follow.

Power on hosts bar,baz,foo01,foo02,...,foo05: powerman --on bar baz foo[01-05]

Power on hosts bar,foo7,foo9,foo10: powerman --on bar,foo[7,9-10]

Power on foo0,foo4,foo5: powerman --on foo[0,4-5]

As a reminder to the reader, some shells will interpret brackets ([and]) for pattern matching. Depending
on your shell, it may be necessary to enclose ranged lists within quotes. For example, in tcsh, the last
example above should be executed as:

powerman --on "foo[0,4-5]"

2.9.2 The pmpower tool
The pmpower utility is a high level tool for manipulating remote preconfigured power devices connected to
the console server either via a serial or network connection. The PDU UPS and IPMI power devices are
variously controlled using the open source PowerMan, IPMItool or Network UPS Tools and Opengear’s
pmpower utility arches over these tools so the devices can be controlled through the one command line:

pmpower [-?h] [-l device | -r host] [-o outlet] [-u username] [-p password] action

 -?/-h This help message.
 -l The serial port to use.
 -o The outlet on the power target to apply to
 -r The remote host address for the power target
 -u Override the configured username
 -p Override the configured password
 on This action switches the specified device or outlet(s) on

 CLI and Scripting Reference

 off This action switches the specified device or outlet(s) off
 cycle This action switches the specified device or outlet(s) off and on again
 status This action retrieves the current status of the device or outlet

Examples:

To turn outlet 4 of the power device connected to serial port 2 on: # pmpower -l port02 -o 4 on

To turn an IPMI device off located at IP address 192.168.1.100 (where username is 'root' and
password is 'calvin': # pmpower -r 192.168.1.100 -u root -p calvin off

Default system Power Device actions are specified in /etc/powerstrips.xml. Custom Power Devices can be
added in /etc/config/powerstrips.xml. If an action is attempted which has not been configured for a specific
Power Device pmpower will exit with an error.

2.9.3 Adding new RPC devices
There are a number of simple paths to adding support for new RPC devices.

The first is to have scripts to support the particular RPC included in either the open source PowerMan
project (http://sourceforge.net/projects/powerman) or the open source NUT UPS Tools project. The
PowerMan device specifications are rather weird and it is suggested that you leave the actual writing of
these scripts to the PowerMan authors. However documentation on how they work can be found at
http://linux.die.net/man/5/powerman.dev. The Network UPS Tools(NUT) project has recently moved on
from its UPS management origins to also cover SNMP PDUs (and embrace PowerMan). Opengear
progressively includes the updated PowerMan and NUT build into the console server firmware releases.

The second path is to directly add support for the new RPC devices (or to customize the existing RPC
device support) on your particular console server. The Manage: Power page uses information contained
in /etc/powerstrips.xml to configure and control devices attached to a serial port. The configuration also
looks for (and loads) /etc/config/powerstrips.xml if it exists.

The user can add their own support for more devices by putting definitions for them into
/etc/config/powerstrips.xml. This file can be created on a host system and copied to the Management
Console device using scp. Alternatively, login to the Management Console and use ftp or wget to transfer
files.

Here is a brief description of the elements of the XML entries in /etc/config/powerstrips.xml.

 <powerstrip>
 <id>Name or ID of the device support</id>
 <outlet port="port-id-1">Display Port 1 in menu</outlet>
 <outlet port="port-id-2">Display Port 2 in menu</outlet>
 ...
 <on>script to turn power on</on>
 <off>script to power off</off>
 <cycle>script to cycle power</cycle>
 <status>script to write power status to /var/run/power-status</status>
 <speed>baud rate</speed>
 <charsize>character size</charsize>
 <stop>stop bits</stop>
 <parity>parity setting</parity>
 </powerstrip>

The id appears on the web page in the list of available devices types to configure.

The outlets describe targets that the scripts can control. For example a power control board may control
several different outlets. The port-id is the native name for identifying the outlet. This value will be passed
to the scripts in the environment variable outlet, allowing the script to address the correct outlet.

Chapter 2: Advanced Configuration

64

There are four possible scripts: on, off, cycle and status.

When a script is run, it's standard input and output is redirected to the appropriate serial port. The script
receives the outlet and port in the outlet and port environment variables respectively.

The script can be anything that can be executed within the shell.

All of the existing scripts in /etc/powerstrips.xml use the pmchat utility.

pmchat works just like the standard unix "chat" program, only it ensures interoperation with the port
manager.

The final options, speed, charsize, stop and parity define the recommended or default settings for the
attached device.

2.10 IPMItool

The console server includes the ipmitool utility for managing and configuring devices that support the
Intelligent Platform Management Interface (IPMI) version 1.5 and version 2.0 specifications.

IPMI is an open standard for monitoring, logging, recovery, inventory, and control of hardware that is
implemented independent of the main CPU, BIOS, and OS. The service processor (or Baseboard
Management Controller, BMC) is the brain behind platform management and its primary purpose is to
handle the autonomous sensor monitoring and event logging features.

The ipmitool program provides a simple command-line interface to this BMC. It features the ability to read
the sensor data repository (SDR) and print sensor values, display the contents of the System Event Log
(SEL), print Field Replaceable Unit (FRU) inventory information, read and set LAN configuration
parameters, and perform remote chassis power control.

SYNOPSIS
ipmitool [-c|-h|-v|-V] -I open <command>

ipmitool [-c|-h|-v|-V] -I lan -H <hostname>
 [-p <port>]
 [-U <username>]
 [-A <authtype>]
 [-L <privlvl>]
 [-a|-E|-P|-f <password>]
 [-o <oemtype>]
 <command>

ipmitool [-c|-h|-v|-V] -I lanplus -H <hostname>
 [-p <port>]
 [-U <username>]
 [-L <privlvl>]
 [-a|-E|-P|-f <password>]
 [-o <oemtype>]
 [-C <ciphersuite>]
 <command>

DESCRIPTION

This program lets you manage Intelligent Platform Management Interface (IPMI) functions of either the
local system, via a kernel device driver, or a remote system, using IPMI V1.5 and IPMI v2.0. These
functions include printing FRU information, LAN configuration, sensor readings, and remote chassis power
control.

 CLI and Scripting Reference

IPMI management of a local system interface requires a compatible IPMI kernel driver to be installed and
configured. On Linux this driver is called OpenIPMI and it is included in standard distributions. On Solaris
this driver is called BMC and is included in Solaris 10. Management of a remote station requires the IPMI-
over-LAN interface to be enabled and configured. Depending on the particular requirements of each
system it may be possible to enable the LAN interface using ipmitool over the system interface.

OPTIONS
-a Prompt for the remote server password.
-A <authtype>

Specify an authentication type to use during IPMIv1.5 lan session activation. Supported types are
NONE, PASSWORD, MD5, or OEM.

-c Present output in CSV (comma separated variable) format. This is not available with all
commands.

-C <ciphersuite>
The remote server authentication, integrity, and encryption algorithms to use for IPMIv2 lanplus
connections. See table 22-19 in the IPMIv2 specification. The default is 3 which specifies RAKP-
HMAC-SHA1 authentication, HMAC-SHA1-96 integrity, and AES-CBC-128 encryption algorithms.

-E The remote server password is specified by the environment variable IPMI_PASSWORD.
-f <password_file>

Specifies a file containing the remote server password. If this option is absent, or if password_file
is empty, the password will default to NULL.

-h Get basic usage help from the command line.
-H <address>

Remote server address, can be IP address or hostname. This option is required for lan and
lanplus interfaces.

-I <interface>
Selects IPMI interface to use. Supported interfaces that are compiled in are visible in the usage
help output.

-L <privlvl>
Force session privilege level. Can be CALLBACK, USER, OPERATOR, and ADMIN. Default is
ADMIN.

-m <local_address>
Set the local IPMB address. The default is 0x20 and there should be no need to change it for
normal operation.

-o <oemtype>
Select OEM type to support. This usually involves minor hacks in place in the code to work around
quirks in various BMCs from various manufacturers. Use -o list to see a list of current supported
OEM types.

-p <port>
Remote server UDP port to connect to. Default is 623.

-P <password>
Remote server password is specified on the command line. If supported it will be obscured in the
process list. Note! Specifying the password as a command line option is not recommended.

-t <target_address>
Bridge IPMI requests to the remote target address.

-U <username>
Remote server username, default is NULL user.

-v Increase verbose output level. This option may be specified multiple times to increase the level of
debug output. If given three times you will get hexdumps of all incoming and outgoing packets.

-V Display version information.

If no password method is specified then ipmitool will prompt the user for a password. If no password is
entered at the prompt, the remote server password will default to NULL.

SECURITY

Chapter 2: Advanced Configuration

66

The ipmitool documentation highlights that there are several security issues to be considered before
enabling the IPMI LAN interface. A remote station has the ability to control a system's power state as well
as being able to gather certain platform information. To reduce vulnerability it is strongly advised that the
IPMI LAN interface only be enabled in 'trusted' environments where system security is not an issue or
where there is a dedicated secure 'management network' or access has been provided through an
console server.

Further it is strongly advised that you should not enable IPMI for remote access without setting a
password, and that that password should not be the same as any other password on that system.

When an IPMI password is changed on a remote machine with the IPMIv1.5 lan interface the new
password is sent across the network as clear text. This could be observed and then used to attack the
remote system. It is thus recommended that IPMI password management only be done over IPMIv2.0
lanplus interface or the system interface on the local station.

For IPMI v1.5, the maximum password length is 16 characters. Passwords longer than 16 characters will
be truncated.

For IPMI v2.0, the maximum password length is 20 characters; longer passwords are truncated.

COMMANDS

help

This can be used to get command-line help on ipmitool commands. It may also be placed at the
end of commands to get option usage help.

ipmitool help

Commands:
 raw Send a RAW IPMI request and print
 response
 lan Configure LAN Channels
 chassis Get chassis status and set power
 state
 event Send pre-defined events to MC
 mc Management Controller status and
 global enables
 sdr Print Sensor Data Repository
 entries and readings
 sensor Print detailed sensor information
 fru Print built-in FRU and scan SDR
 for FRU locators
 sel Print System Event Log (SEL)
 pef Configure Platform Event Filtering
 (PEF)
 sol Configure IPMIv2.0 Serial-over-LAN
 isol Configure IPMIv1.5 Serial-over-LAN
 user Configure Management Controller
 users
 channel Configure Management Controller
 channels
 session Print session information
 exec Run list of commands from file
 set Set runtime variable for shell and
 exec

ipmitool chassis help

Chassis Commands: status, power, identify, policy, restart_cause, poh, bootdev

 CLI and Scripting Reference

ipmitool chassis power help

chassis power Commands: status, on, off, cycle, reset, diag, soft

You will find more details on ipmitools at http://ipmitool.sourceforge.net/manpage.html.

2.11 REST API

The latest Console Server REST API is located here: https://ftp.opengear.com/download/api/cs/.

The current endpoints include:

/sessions - authenticate the user and create a session token for accessing all other Lighthouse
endpoints.
/registration - used by Lighthouse to provide the Node with the address and credentials to
retrieve an enrollment package for the device

/auth - update and retrieve the authentication configuration from the console server

/groups - update and retrieve the group configuration from the console server

/users – get user list configuration for console server

/serialPorts - retrieve the serial port configuration from the console server

/secureShell - get the SSH port of the device

/system/version - retrieve the system version from the console server

/interfaces - list network interfaces

/interfaces/cellmodem/status - retrieve status data about the cellular modem in the device

/interfaces/cellmodem/tests - list available cell modem tests

/interfaces/cellmodem/tests/ping - test ping on a cellmodem interface

/interfaces/cellmodem/tests/http - test ping on a cellmodem interface

/interfaces/cellmodem/tests/dns - test ping on a cellmodem interface

2.12 Custom Development Kit (CDK)

As detailed in this manual, customers can copy scripts, binaries and configuration files directly to the
console server.

Opengear also freely provides a development kit which allows changes to be made to the software in
console server firmware image. The customer can use the CDK to:

§ generate a firmware image without certain programs, such as telnet, which may be banned by
company policy

§ generate an image with new programs, such as custom Nagios plug-in binaries or company specific
binary utilities

§ generate an image with custom defaults e.g. it may be required that the console server be configured
to have a specific default serial port profile which is reverted to even in event of a factory reset

§ place configuration files into the firmware image, which cannot then be modified e.g. # /bin/config –-
set= tools update the configuration files in /etc/config which are read/write, whereas the files in /etc are
read only and cannot be modified

The CDK essentially provides a snapshot of the Opengear build process (taken after the programs have
been compiled and copied to a temporary directory romfs) just before the compressed file systems are

Chapter 2: Advanced Configuration

68

generated. You can obtain a copy of the Opengear CDK for the particular appliance you are working with
from https://ftp.opengear.com/download/cdk and find further information online at
http://www.opengear.com/faq284.html

Note Opengear does not provide free technical support for systems modified using the CDK and any
changes are the responsibility of the user.

2.13 Scripts for Managing Slaves

When the console servers are cascaded the Master is in control of the serial ports on the Slaves, and the
Master’s Management Console provides a consolidated view of the settings for its own and all the Slave’s
serial ports. However, the Master does not provide a fully consolidated view e.g. Status: Active Users only
displays those users active on the Master’s ports and you will need to write a custom bash script that
parses the port logs if you want to find out who's logged in to cascaded serial ports from the master.

You will probably also want to enable remote or USB logging, as local logs only buffer 8K of data and
don't persist between reboots.

This script would e.g. parse each port log file line by line, each time it sees 'LOGIN: username', it adds
username to the list of connected users for that port, each time it sees 'LOGOUT: username' it removes it
from the list. The list can then be nicely formatted and displayed. It's also possible to run this as a CGI
script on the remote log server.

To enable log storage and connection logging:
- Select Alerts & Logging: Port Log
- Configure log storage
- Select Serial & Network: Serial Port, Edit the serial port(s)
- Under Console server, select Logging Level 1 and click Apply

There’s a useful tutorial on creating a bash script CGI at
http://www.yolinux.com/TUTORIALS/LinuxTutorialCgiShellScript.html

Similarly the Master does maintain a view of the status of the slaves:
- Select Status: Support Report
- Scroll down to Processes
- Look for: /bin/ssh -MN -o ControlPath=/var/run/cascade/%h slavename
- These are the slaves that are connected
- Note the end of the Slaves' names will be truncated, so the first 5 characters must be unique

Alternatively, you can write a custom CGI script as described above. The currently connected Slaves can
be determined by running: ls /var/run/cascade and the configured slaves can be displayed by running:
config -g config.cascade.slaves

2.14 SMS Server Tools

Firmware releases V3.1 and later include the SMS Server Tools software which provides an SMS
Gateway which can send and receive short messages through GSM modems and mobile phones.

You can send short messages by simply storing text files into a special spool directory. The program
monitors this directory and sends new files automatically. It also stores received short messages into
another directory as text files. Binary messages (including Unicode text) are also supported, for example
ring tone messages. It's also possible to send a WAP Push message to the WAP / MMS capable mobile
phone.

 CLI and Scripting Reference

The program can be run as a SMS daemon which can be started automatically when the operating system
starts. High availability can be ensured by using multiple GSM devices (currently up to 64, this limit is
easily changeable).

The program can run other external programs or scripts after events like reception of a new message,
successful sending and also when the program detects a problem. These programs can inspect the
related text files and perform automatic actions

The SMS Server Tools software needs a GSM modem (or mobile phone) with SMS command set
according to the European specifications GSM 07.05 (=ETSI TS 300 585) and GSM 03.38 (=ETSI TS 100
900). AT command set is supported. Devices can be connected with serial port, infrared or USB.

For more information refer http://smstools3.kekekasvi.com or the online Opengear faq.html

2.15 Multicast

By default, all Opengear console servers come with Multicasting enabled. Multicasting provides Opengear
products with the ability to simultaneously transmit information from a single device to a select group of
hosts.

Multicasting can be disabled and re-enabled from the command line (Firmware releases V3.1 and later).
To disable multicasting type:

ifconfig eth0 -multicast

To re-enable multicasting from the command line type:

ifconfig eth0 multicast

IPv6 may need to be restarted when toggling between multicast states.

2.16 Bulk Provisioning

Opengear appliances include wizard scripts to facilitate configuration and deployment en masse. These
wizards operate at the command line level, so knowledge of the Linux command line and shell scripting is
useful, but not necessary – they aim to be user-friendly enough for remote hands to manage. This bulk
provisioning feature is supported by firmware version 3.9.1 or later, and Lighthouse version 4.4.0 and later
(optional).

Both the bulk provisioning of Opengear appliances and bulk enrollment of these appliances into
Lighthouse central management system(s) is supported. These features may be used separately or in
conjunction.

Using this method, an Opengear appliance can be fully configured and enrolled into Lighthouse with
minimal interaction, in under 5 minutes. The basic steps are:

1. Configure an individual “golden master” appliance with the baseline configuration shared by all

Opengear appliances. This may be a minimal configuration if the installs are quite diverse, or a
complete configuration when dealing with replicated installs.

2. Use make-template to turn the golden master’s active configuration into a template configuration that

may be applied to other appliances.

3. Create an OPG backup of the templated golden master appliance.

4. Restore this configuration to each target devices via the CLI, web UI or using a USB thumb drive.

Chapter 2: Advanced Configuration

70

5. Login via the CLI to complete configuration using setup-wizard.

6. (Optional) On Lighthouse, use enrollment-wizard to automatically place appliances under

management. This may be local/routable appliances, or remote appliances that have automatically
Call Home using callhome-wizard.

Note: Full details for the above steps can be found in the Knowledge Base

2.17 Zero Touch Provisioning

Zero Touch Provisioning (ZTP) was introduced with firmware release 3.15.1 to allow Opengear appliances
to be provisioned during their initial boot from a DHCP server.

2.17.1 Preparation
These are typical steps for configuration over a trusted network:

1. Configure a same-model Opengear device.

2. Optionally use the Bulk Provisioning wizard scripts to remove any appliance-specific settings (i.e.
create a template configuration) and/or prepare the configuration for automated Lighthouse
enrollment.

3. Save the configuration as an Opengear backup (.opg) file under System: Configuration Backup in
the web UI, or via config -e in the CLI. Alternatively, you can save the XML configuration as a file
ending in .xml.

4. Publish the .opg or.xml file on a fileserver that understands one of the HTTPS, HTTP, FTP or
TFTP protocols.

5. Configure your DHCP server to include a "vendor specific" option for Opengear devices. The
option text should be a URL to the location of the .opg or .xml file. The option text should not
exceed 250 characters in length. It must end in either .opg or .xml.

6. Connect a new Opengear device (either at defaults from the factory, or config erased) to the
network and apply power.

7. It may take up to 5 minutes for the device to find the .opg or .xml file via DHCP, download, install
the file and reboot itself.

2.17.2 Example ISC DHCP server configuration
The following is an example of an ISC DHCP server configuration fragment for serving an .opg
configuration image:

option space opengear code width 1 length width 1;

option opengear.config-url code 1 = text;

class "opengear-ztp" {

 match if option vendor-class-identifier ~~ "^Opengear/";

 vendor-option-space opengear;

 option opengear.config-url "https://example.com/opg/${class}.opg";

}

 CLI and Scripting Reference

For other DHCP servers, please consult their documentation on specifying "Vendor Specific" option fields.
We use sub-option 1 to hold the URL text.

2.17.3 Setup for an untrusted LAN
If network security is a concern, and you can have remote hands insert a trusted USB flash drive into the
Opengear device during provisioning, then follows are a summary of the steps required for deploying
configuration in an untrusted network:

1. Generate an X.509 certificate for the client. Place it and its private key file onto a USB flash drive
(concatenated as a single file, client.pem).

2. Set up a HTTPS server that restricts access to the .opg or .xml file for HTTPS onnections
providing the client certificate.

3. Put a copy of the CA cert (that signed the HTTP server's certificate) onto the USB flash drive as
well (ca-bundle.crt).

4. Insert the USB flash drive into the Opengear device before attaching power or network.

5. Continue with the steps above but using only a https URL.

6. A detailed step-by-step document for preparing a USB flash drive and using OpenSSL to create
keys is at Howto: set up a USB key for authenticated restore

2.17.4 How it works
This section explains in detail how the Opengear device uses DHCP to obtain its initial configuration.

First, an Opengear console manager is either configured or unconfigured. ZTP needs it to be in an
unconfigured state, which is only obtained in the following ways:

• Firmware programming at factory

• Pressing the Config Erase button twice during operation

• Selecting Config Erase under System: Administration in the web UI, and rebooting

• Creating the file /etc/config/.init and then rebooting (command-line)

When an unconfigured Opengear boots, it performs these steps to find a configuration:

• The Opengear device transmits a DHCP DISCOVER request onto its primary Network Interface
(wan). This DHCP request will carry a Vendor Class Identifier of the form Opengear/model-name
(for example, Opengear/ACM5003-M) and its parameter request list will include option 43
(Vendor-Specific Information).

• On receipt of a DHCP OFFER, the device will use the information in the offer to assign an IPv4
address to its primary Network Interface, add a default route, and prepare its DNS resolver.

• If the offer also contained an option 43 with sub-option 1, the device interprets the sub-option as a
whitespace-separated list of URLs to configuration files to try to restore.

• If an NTP server option was provided in the DHCP offer, the system clock is (quickly)
synchronized with the NTP server.

• The system now searches all attached USB storage devices for two optional certificate files. The
first file is named ca-bundle.crt and the second one is whichever one of the following filenames is
found first:

o client-AABBCCDDEEFF.pem (where AABBCCDDEEFF is the MAC address of the
primary network interace); or

Chapter 2: Advanced Configuration

72

o client-MODEL.pem (where MODEL is the (vendor class) model name in lowercase,
truncated to before the first hyphen); or

o client.pem

• If both files are found (ca-bundle.crt and a client.pem), then secure mode is enabled for the next
section.

• Each URL in the list obtained from option 43 sub-option 1 is tried in sequence until one succeeds:

o The URL undergoes substring replacement from the following table:

Substring Replaced by Example

${mac} the 12-digit MAC address of the device, lowercase 0013b600b669

${model} the full model name, in lowercase acm5504-5-g-w-i

${class} the firmware hardware class ACM550x

${version} the firmware version number 3.15.1

o The resulting URL must end in .opg or .xml (an optional ?query-string is permitted). It is
doesn't, then it is skipped and the next URL is tried.

o In secure mode, the URL must use the https scheme or it is skipped.

o Otherwise the available schemes are: http https tftp ftp ftps

o The curl program is used to download the URL.

o In secure mode, the server's certificate must validate against the ca-bundle.crt. The
(reqiured) client.pem file is provided to authenticate the client to the server. Please see
the curl documentation for the format of these files.

• The URL is downloaded. For .opg files its header is checked to see if it is compatible with the
current device. For .xml files, a parse check is made. If the check fails, the downloaded file is
abandoned and the next URL is tried.

• The file is imported into the current configuration.

• The system checks to see if a hostname has been set in the config. If not, it is set to ${model}-
${mac}.

• The system checks to see if it is still in an unconfigured state. If it is, then the network interface
mode is set to DHCP. This effectively forces the system into a configured state, preventing a
future reboot loop.

• The system reboots

If all the URLs were skipped or failed, the system will wait for 30 seconds before retrying again. It will retry
all the URLs up to 10 times. After the 10th retry, the system reboots. If the system has been manually
configured in the meantime, the retries stop and ZTP is disabled.

If no option 43 is received over DHCP, no URLs are downloaded and no reboots occur: the system must
be manually configured. Once configured (manually or by ZTP), an Opengear will no longer request option
43 from the DHCP server, and it will ignore any option 43 configuration URLs presented to it.

 CLI and Scripting Reference

2.18 Internal Storage

Some models have an internal USB flash drive, a non-volatile NAND flash partition, or both, which can be
used by portmanager for log storage and the TFTP/FTP server for file storage.

These storage devices are automatically mounted as subdirectories of /var/mnt/. The default directory
served by FTP or TFTP is set to the preferred internal storage (if any), otherwise the first detected
attached USB storage. The location of portmanager logs must be manually configured.

2.18.1 Filesystem location of FTP/TFTP directory

Product Preferred storage Directory

ACM7000 Internal flash /var/mnt/storage.nvlog/tftpboot/

CM7100 Internal USB flash /var/mnt/storage.usb/tftpboot/

IM7200 Internal USB flash /var/mnt/storage.usb/tftpboot/

ACM5500 Internal USB flash /var/mnt/storage.usb/tftpboot/

ACM5000-F Internal USB flash option /var/mnt/storage.usb/tftpboot/

Other products with
USB

First-attached USB storage /var/mnt/storage.usb/tftpboot/

2.18.2 Filesystem location of portmanager logs

Port log server type Directory

USB Flash Memory /var/mnt/storage.usb/

Non-volatile internal storage /var/mnt/storage.nvlog/

MicroSD Card /var/mnt/storage.sd/

Other (NFS, CIFS, etc.) As explicitly configured

2.18.3 Configuring FTP/TFTP directory
The FTP or TFTP services can be configured to serve different directories via the command line, e.g.:

config -s config.services.ftp.directory=/var/mnt/storage.usb/my-ftp-dir

config -r services

The directory will be created if it doesn't already exist.

2.18.3 Mounting a preferred USB disk by label
Currently, the "first" USB storage device is mounted at /var/mnt/storage.usb by detecting the lowest
numbered disk partition, e.g. /dev/sda1, but this can be constrained to match a particular port or a
labelled device.

1. Attach the USB disk you plan to use

Chapter 2: Advanced Configuration

74

2. Look in directories /dev/disk/by-path/ or /dev/disk/by-label/ to find a suitably stable
way of identifying your disk

3. Use the following command to see the current device matching string used:
config -g config.storage.usb.device

4. Change the path match with (for example):
config -s config.storage.usb.device=/dev/disk/by-label/1103

 CLI and Scripting Reference

APPENDIX A: Linux Commands & Source Code

The console server platform is a dedicated Linux computer, optimized to provide monitoring and secure
access to serial and network consoles of critical server systems and their supporting power and networking
infrastructure.

Opengear console servers are built on the uCLinux distribution as developed by the uCLinux project. This
is GPL code and source can be found at http://cvs.uclinux.org.

Some uCLinux commands have config files that can be altered (e.g. portmanager, inetd, init, sshd).

Other commands you can run and do neat stuff with (e.g. loopback, bash (shell), ftp, hwclock, iproute,
iptables, netcat, ifconfig, mii-tool, netstat, route, ping, portmap, pppd, routed, setserial, smtpclient, stty,
stunel, tcpdump, tftp, tip, traceroute)

Below are most of the standard uCLinux and Busybox commands (and some custom Opengear
commands) that are in the default build tree. The Administrator can use these to configure the console
server, and monitor and manage attached serial console and host devices:

addgroup * Add a group or add a user to a group
adduser * Add a user
agetty alternative Linux getty
arp Manipulate the system ARP cache
arping Send ARP requests/replies
bash GNU Bourne-Again Shell
busybox Swiss army knife of embedded Linux commands
cat * Concatenate FILE(s) and print them to stdout
chat Useful for interacting with a modem connected to stdin/stdout
chgrp * Change file access permissions
chmod * Change file access permissions
chown * Change file owner and group

config Opengear tool to manipulate and query the system configuration from the
command line

cp * Copy files and directories
date * Print or set the system date and time
dd * Convert and copy a file
deluser * Delete USER from the system
df * Report file system disk space usage
dhcpd Dynamic Host Configuration Protocol server
discard Network utility that listens on the discard port
dmesg * Print or control the kernel ring buffer
echo * Print the specified ARGs to stdout
erase Tool for erasing MTD partitions
eraseall
expect

Tool for erasing entire MTD partitions
Waits for user input

false * Do nothing, unsuccessful
find Search for files
flashw Write data to individual flash devices
flatfsd Daemon to save RAM file systems back to FLASH
ftp Internet file transfer program
gen-keys SSH key generation program

Linux Commands & Source Code

76

getopt * Parses command options
gettyd Getty daemon
grep * Print lines matching a pattern
gunzip * Compress or expand files
gzip * Compress or expand files
hd ASCII, decimal, hexadecimal, octal dump
hostname * Get or set hostname or DNS domain name
httpd Listen for incoming HTTP requests
hwclock Query and set hardware clock (RTC)
inetd Network super-server daemon
inetd-echo Network echo utility
init Process control initialization
ip Show or manipulate routing, devices, policy routing and tunnels
ipmitool Linux IPMI manager
iptables Administration tool for IPv4 packet filtering and NAT
ip6tables Administration tool for IPv6 packet filtering
iptables-
restore Restore IP Tables

iptables-save Save IP Tables
kill * Send a signal to a process to end gracefully
ln * Make links between files
login Begin session on the system
loopback Opengear loopback diagnostic command
loopback1 Opengear loopback diagnostic command
loopback2 Opengear loopback diagnostic command
loopback8 Opengear loopback diagnostic command
loopback16 Opengear loopback diagnostic command
loopback48 Opengear loopback diagnostic command
ls * List directory contents
mail Send and receive mail
mkdir * Make directories
mkfs.jffs2 Create an MS-DOS file system under Linux
mknod * Make block or character special files
more * File perusal filter for crt viewing
mount * Mount a file system
msmtp SMTP mail client
mv * Move (rename) files
nc TCP/IP Swiss army knife
netflash Upgrade firmware on ucLinux platforms using the blkmem interface
netstat Print network connections, routing tables, interface statistics etc
ntpd Network Time Protocol (NTP) daemon
pgrep Display process(es) selected by regex pattern
pidof Find the process ID of a running program
ping Send ICMP ECHO_REQUEST packets to network hosts
ping6 IPv6 ping
pkill Sends a signal to process(es) selected by regex pattern
pmchat Opengear command similar to the standard chat command (via portmanager)
pmdeny

 CLI and Scripting Reference

pminetd

pmloggerd

pmshell Opengear command similar to the standard tip or cu but all serial port access is
directed via the portmanager.

pmusers Opengear command to query portmanager for active user sessions
portmanager Opengear command that handles all serial port access
portmap DARPA port to RPC program number mapper
pppd Point-to-Point protocol daemon
ps * Report a snapshot of the current processes
pwd * Print name of current/working directory
reboot * Soft reboot
rm * Remove files or directories
rmdir * Remove empty directories
routed Show or manipulate the IP routing table
routed Show or manipulate the IP routing table
routef IP Route tool to flush IPv4 routes
routel IP Route tool to list routes
rtacct Applet printing /proc/net/rt_acct
rtmon RTnetlink listener
scp Secure copy (remote file copy program)
sed * Text stream editor
setmac Sets the MAC address
setserial Sets and reports serial port configuration
sh Shell
showmac Shows MAC address
sleep * Delay for a specified amount of time
smbmnt Helper utility for mounting SMB file systems
smbmount Mount an SMBFS file system
smbumount SMBFS umount for normal users
snmpd SNMP daemon
snmptrap Sends an SNMP notification to a manager
sredird RFC 2217 compliant serial port redirector
ssh OpenSSH SSH client (remote login program)
ssh-keygen Authentication key generation, management, and conversion
sshd OpenSSH SSH daemon
stty Change and print terminal line settings
stunnel Universal SSL tunnel
sync * Flush file system buffers
sysctl Configure kernel parameters at runtime
syslogd System logging utility
tar * The tar archiving utility
tc Show traffic control settings
tcpdump Dump traffic on a network
telnetd Telnet protocol server
tftp Client to transfer a file from/to tftp server
tftpd Trivial file Transfer Protocol (tftp) server
tip Simple terminal emulator/cu program for connecting to modems and serial devices

Linux Commands & Source Code

78

top Provide a view of process activity in real time
touch * Change file timestamps
traceroute Print the route packets take to network host
traceroute6 Traceroute for IPv6
true * Returns an exit code of TRUE (0)
umount * Unmounts file systems
uname * Print system information
usleep * Delay for a specified amount of time
vconfig * Create and remove virtual Ethernet devices
vi * Busybox clone of the VI text editor
w Show who is logged on and what they are doing
zcat * Identical to gunzip -c

Commands above which are appended with '*' come from Busybox (the Swiss Army Knife of embedded
Linux) http://www.busybox.net/downloads/BusyBox.html.

Others are generic Linux commands and most commands the -h or --help argument to provide a terse
runtime description of their behavior. More details on the generic Linux commands can found online at
http://en.tldp.org/HOWTO/HOWTO-INDEX/howtos.html and http://www.faqs.org/docs/Linux-
HOWTO/Remote-Serial-Console-HOWTO.html

An updated list of the commands in the latest console server build can be found at
http://www.opengear.com/faq233.html. However it may be worth using ls command to view all the
commands actually available in the /bin directory in your console server.

There are a number of Opengear tools that make it simple to configure the console server and ensure the
changes are stored in the console server's flash memory etc. These include:

• config which allows manipulation and querying of the system configuration from the command
line. With config a new configuration can be activated by running the relevant configurator, which
performs the action necessary to make the configuration changes live

• portmanager which provides a buffered interface to each serial port. It is supported by the
pmchat and pmshell commands which ensure all serial port access is directed via the
portmanager

• pmpower is a configurable tool for manipulating remote power devices that are serially or network
connected to the console server

• SDT Connector is a java client applet that provides point-and-click SSH tunneled connections to
the console server and Managed Devices

There are also a number of other CLI commands related to other open source tools embedded in the
console server including:

• PowerMan provides power management for many preconfigured remote power controller (RPC)
devices. For CLI details refer http://linux.die.net/man/1/powerman

• Network UPS Tools (NUT) provides reliable monitoring of UPS and PDU hardware and ensure
safe shutdowns of the systems which are connected - with a goal to monitor every kind of UPS
and PDU. For CLI details refer http://www.networkupstools.org

• Nagios is a popular enterprise-class management tool that provides central monitoring of the
hosts and services in distributed networks. For CLI details refer http://www.nagios.org

Many components of the console server software are licensed under the GNU General Public License
(version 2), which Opengear supports. You may obtain a copy of the GNU General Public License at

 CLI and Scripting Reference

http://www.fsf.org/copyleft/gpl.html. Opengear will provide source code for any of the components of
the software licensed under the GNU General Public License upon request.

Note: The software included in each Opengear console server contains copyrighted software that is
licensed under the GPL (refer Appendix F for a copy of the GPL license). You may obtain the
latest snapshot source code package on a CD by sending a money order or check for $5 to:
Opengear Support
630 West 9560 South, Suite A
Sandy, UT 84070, USA

Alternately the complete source code corresponding to each released version is available from us
for a period of three years after its last shipment. If you would like the source code for an earlier
release than the latest current release please write “source for firmware Version x.xx ” in the
memo line of your payment.

This offer is valid to anyone in receipt of this information.

The console server also embodies the okvm console management software. This is GPL code and the full
source is available from http://okvm.sourceforge.net.

The console server BIOS (boot loader code) is a port of uboot which is also a GPL package with source
openly available.

The console server CGIs (the html code, xml code and web config tools for the Management Console) are
proprietary to Opengear, however the code will be provided to customers, under NDA.

The console server also supports GNU bash shell script enabling the Administrator to run custom scripts.
GNU bash, version 2.05.0(1)-release (arm-OpenGear-linux-gnu) offers the following shell commands:

alias [-p] [name[=value] ...]
bg [job_spec]
bind [-lpvsPVS] [-m keymap] [-f fi break [n]
builtin [shell-builtin [arg ...]]
case WORD in [PATTERN [| PATTERN]
cd [-PL] [dir]
command [-pVv]
command [arg ...]
compgen [-abcdefjkvu] [-o option]
complete [-abcdefjkvu] [-pr] [-o o]
continue [n]
declare [-afFrxi] [-p] name[=value]
dirs [-clpv] [+N] [-N]
disown [-h] [-ar] [jobspec ...]
echo [-neE] [arg ...]
enable [-pnds] [-a] [-f filename]
eval [arg ...]
exec [-cl] [-a name] file [redirec]
expect [arg ...]
exit [n]
export [-nf] [name ...] or export
false

local name[=value] ...
logout
popd [+N | -N] [-n]
printf format [arguments]
pushd [dir | +N | -N] [-n]
pwd [-PL]
read [-ers] [-t timeout] [-p promp]
readonly [-anf] [name ...] or read return
[n]
select NAME [in WORDS ... ;] do
COMMANDS
set [--abefhkmnptuvxBCHP] [-o opti]
shift [n]
shopt [-pqsu] [-o long-option] opt
source filename
suspend [-f]
test [expr]
time [-p] PIPELINE
times
trap [arg] [signal_spec ...]
true
type [-apt] name [name ...]

Linux Commands & Source Code

80

fc [-e ename] [-nlr] [first] [last]
fg [job_spec]
for NAME [in WORDS ... ;] do COMMA
function NAME { COMMANDS ; } or NA
getopts optstring name [arg]
hash [-r] [-p pathname] [name ...]
help [-s] [pattern ...]
history [-c] [-d offset] [n] or hi
if COMMANDS; then COMMANDS; [elif jobs [-lnprs]
[jobspec ...] or job kill [-s sigspec | -n signum | -si let
arg [arg ...]

typeset [-afFrxi] [-p] name[=value
ulimit [-SHacdflmnpstuv] [limit]
umask [-p] [-S] [mode]
unalias [-a] [name ...]
unset [-f] [-v] [name ...]
until COMMANDS; do COMMANDS;
done
variables - Some variable names an
wait [n]
while COMMANDS; do COMMANDS;
done { COMMANDS ; }

